• Title/Summary/Keyword: Soil reclamation

Search Result 400, Processing Time 0.022 seconds

Changes in Availability of Toxic Trace Elements (TTEs) and Its Effects on Soil Enzyme Activities with Amendment Addition

  • Lee, Sang-Hwan;Park, Misun;Kim, Min-Suk
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.2
    • /
    • pp.134-144
    • /
    • 2020
  • In-situ stabilization is a remediation method using amendments to reduce contaminant availability in contaminated soil. We tested the effects of two amendments (furnace slag and red mud) on the availability of toxic trace elements (TTEs) and soil enzyme activities (dehydrogenase, phosphatase, and urease). The application of amendments significantly decreased the availability of TTEs in soil (p < 0.05). The decreased availability of TTE content in soils was accompanied by increased soil enzyme activities. We found significant negative relationships between the TTE content assessed using Ca(NO3)2-, TCLP, and PBET extraction methods and soil enzyme activities (p < 0.01). Soil enzyme activities responded sensitively to changes in the soil environment (pH, EC, and availability of TTEs). It could be concluded that soil enzyme activities could be used as bioindicators or ecological indicators for soil quality and health in environmental soil monitoring owing to their high sensitivity to changes in soil.

Retention Ratio of Dredged Soil at Incheon Habour Route using Self-Weight Consolidation Test (인천지역 항로 준설토의 침강자중압밀시험에 의한 유보율 결정에 관한 연구)

  • Shin, Eun-Chul;Park, Young-Jin;Kang, Jeong-Ku
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.57-66
    • /
    • 2017
  • Self-weight consolidation test and soil property of dredged soil at Incheon habour route were analyzed to determine the initial dredging reclamation amount, reclamation depth, and estimating the required time of self-weight consolidation with calculation of the final planned height of dredging reclamation site. The moisture content, void ratio and ratio of volume change with elapsed time after throwing were estimated through Yano's empirical equation. As a result, there was a less variation in elements when fine-grained soil content was low as similarly to the behavior of coefficient of sedimentation-consolidation, Cs and the highest variation was shown at the fine-grained soil content of 50%. The retention ratio according to the fine grained soil content that could reinforce the comprehensive aspect of retention ratio for each particle size presented in the standard of estimate for reclamation construction work was calculated and presented using the calculated ratio of volume change.

A Study of Sedimentation Processes of Saemangeum Reclamation(II) - A Study of Sedimentation Processes after Saemangeum Reclamation - (새만금간척 퇴적과정에 관한 연구(II) -새만금간척 시행 후를 중심으로-)

  • 신문섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.5
    • /
    • pp.33-40
    • /
    • 2002
  • The purpose of this study is to find the variation of sedimentation patterns after Saemangeum reclamation. Residual flow after Saemangeum reclamation was calculated prognostically from the observed water temperature and salinity data in May 1992 by the Marine Development Institute of Gunsan National University and wind data which were obtained from spring 1969 through winter 1977 by the Kunsan Meteorological Observatory. Three dimensional movements of injected particles due to currents, turbulence and sinking velocity are tracked by the Euler-Lagrange method. When suspended sediments with the size of soil grain of 30 ㎛ are injected in the Sinsi drainage sluice, their dispersion range of sediment is around Gogunsan islands. When suspended sediments with the size of soil grain of 200 ㎛ are injected in the Garyeok drainage sluice, their dispersion range of sediment was around the Garyeok drainage sluice and Byeonsan coastal area.

Transfer of Arsenic from Soilsto Rice Grains through Reducing the Thickness of Soil Covering in Soil Reclamation in an Abandoned Coal Mine Area (폐석탄광산 농경지(논) 토양개량복원 시 복토두께 조정에 따른 비소의 벼 전이효과 현장실증)

  • Il-Ha Koh;Yo Seb Kwon;Ju In Ko;Won Hyun Ji
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.3
    • /
    • pp.157-165
    • /
    • 2023
  • In Korea, a major contaminant of farmland soils in the vicinity of abandoned mines is arsenic, for which the general soil reclamation method is contaminated soil stabilization and cover the stabilized soil with clean soil at a thickness of 40 cm. In a previous pot experiment study we confirmed the feasibility of a lower thickness (20 cm) of covering soil for such reclamation in abandoned coal mines, where arsenic contamination levels are generally lower than in metal mines. In this subsequent study a field experiment including rice plant cultivation in field test plots was conducted. For over 4 months, the transfer of arsenic from the contaminated soil to the unpolished rice grains was reduced by 44% when a clean soil covering with a thickness of 20 cm was applied. The maximum decrease (56%) was shown when the stabilization process was performed before the covering. These results reveal a lower thickness of clean soil covering has a high feasibility and it can increase cost-efficiency in the reclamation of an abandoned coal mine.

Stabilization of Agricultural Soil Contaminated by Arsenic and Heavy Metals using Biochar derived from Buffalo Weed (단풍잎돼지풀 기반 바이오차를 이용한 비소 및 중금속 오염 농경지의 안정화)

  • Koh, Il-Ha;Kim, Jungeun;Kim, Gi Suk;Park, Mi Sun;Kang, Dae Moon;Ji, Won Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.87-100
    • /
    • 2016
  • Biochar, which has high alkalinity, has widely studied for amendment of soil that contaminated with heavy metals. The aim of this study is assessment of amendment for arsenic and heavy metals contaminated acidic agricultural soil using biochar that derived from buffalo weed (A. trifida L. var. trifida). Pot experiments were carried out including analysis of soil solution, contaminants fractionation, soil chemical properties and plant (lettuce) uptake rate. Arsenic and heavy metals concentrations in soil solution showed relatively low in biochar added experiments when compared to the control. In the heavy metals fractionation in soil showed decrease of exchangeable fraction and increase of carbonates fraction; however, arsenic fractionations showed constant. Soil chemical properties indicated that biochar could induce recovery of soil quality for plant growth in terms of soil alkalinity. However, phosphate concentration in biochar added soil decreased due to Ca-P precipitation by exchangeable calcium from biochar. Arsenic and heavy metals uptake rate of plant in the amended experiment decreased to 50% when compared to the control. Therefore biochar derived from buffalo weed can be used as amendment material for agricultural soil contaminated with arsenic and heavy metals. Precipitation of As-Ca and metal-carbonates are major mechanisms for soil amendment using char.

Evaluation of Dredged Soil from Detention Basin (유수지 준설매립토의 적정량 산출에 관한 연구)

  • 신은철;오영인;이규홍
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.381-388
    • /
    • 1999
  • Several large scale reclamation projects are being underway along the coastal line in Korea. Therefore the large quantity of economical backfill material is necessary to cope with the shortage of dredged soil. In this study, the amount of volume reduction of dredged soil from detention basin was evaluated based on the laboratory tests. The percentage of soil particles in dredged organic soil is about 12.5∼21.9% by weight. The content of heavy metal and environmental effect for dredged soil itself and solidified dredged soil were analysed and the results are far below than those of environmental requirement.

  • PDF

DISTRIBUTION AND SCOPE ANALYSIS OF SOIL AND WATER POLLUTION CONTAMINANT AT ABANDONED METALLIFEROUS MINES USING GIS

  • Kim, Jung-A;Yoon, Suk-Ho;Choi, Jong-Kuk;Kim, Won-Kyun
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.721-724
    • /
    • 2006
  • Among many sources of soil and water pollution, former mining regions also play an important role in distribution and scope of pollution. In response, KMRC has made an investigation into the status mine hazard at the abandoned metalliferous mine area in Korea. In this study, we analyzed distribution of mine hazards at abandoned metalliferous mines using GIS. We considered the distribution of mine hazards and its magnitude for each abandoned mine and displayed the mine hazard index (MHI) using GIS. We divided the MHI value for each mine into 5 classes, and displayed the first class as smallest point symbol and the last class as biggest point symbol. The biggest symbol shows the most serious status of mine hazards. This GIS function was included in the AMGIS system KMRS are running, and it would be helpful to make decision of reclamation priority at abandoned metalliferous mine area.

  • PDF

A Comparison on Effect of Stabilization Methods for Heavy Metal contaminated Farm Land Soil by the Field Demonstration Experiment (현장실증시험을 통한 중금속 오염농경지의 안정화처리공법 효과비교)

  • Yu, Chan;Yun, Sung-Wook;Lee, Jung-Hoon;Choi, Seung-Jin;Choi, Duck-Yong;Yi, Ji-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1487-1506
    • /
    • 2009
  • A long-term field experiment of the selected stabilization methods(Cover system, full range and upper range treatment) was conducted to reduce the heavy metal mobility in farmland soil which was contaminated by heavy metals around abandoned mine site. Field experiments were established on the contaminated farmland with the wooden plate and filled with treated soil, which was mixed with lime stone and steel reforming slag except on control plot. Soil samples were collected and analyzed during the experiment period(about 4 months) after the installation of the plots. Field demonstration experiments results showed that the cover system and the full range treatment of the selected stabilization methods applied to the application ratio of lime stone 5% and steel refining slag 2% were effective for immobilizing heavy metal components in contaminated farmland soil.

  • PDF