• Title/Summary/Keyword: Soil quality index

Search Result 167, Processing Time 0.028 seconds

Effects of Reclaimed Wastewater Irrigation on Paddy Rice Yields and Fertilizer Reduction using the DSSAT Model (하수처리수의 농업용수 재이용에 따른 논벼 수확량 모의)

  • Jeong, Han-Seok;Seong, Choung-Hyun;Jang, Tae-Il;Jung, Ki-Woong;Kang, Moon-Seong;Park, Seung-Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.4
    • /
    • pp.67-74
    • /
    • 2011
  • The objectives of this study were to assess the rice yields and evaluate fertilizer reduction effect of reclaimed wastewater irrigation in paddy fields using the Decision Support System for Agrotechnology Transfer (DSSAT) v4.5 model. The experimental plots were designed, which was located near the Suwon wastewater treatment plant in Gyeonggi-do, Korea. The rice yield, irrigation amount, irrigation water quality and soil data were monitored and collected between 2006 and 2009. The DSSAT model was calibrated and validated with observed data. The methods that were used to evaluate this model were the root mean square error (RMSE), normalized root mean square error (nRMSE), and index of agreement (d). The values of RMSE, nRMSE, and d ranged from 145 to $789\;kg\;ha^{-1}$, 3.0 to 13.3 %, and 0.90 to 0.95 for the calibration period, respectively and represented from 91 to $538\;kg\;ha^{-1}$, 2.0 to 10.4 %, 0.94 to 0.98 for the validation period, respectively. Overall, this model showed good agreement with observed data of rice yields irrigated with reclaimed wastewater. The fertilizer reduction effect in paddy field of reclaimed wastewater irrigation was assessed about 60 % in 2008 and 40 % in 2009.

Modified indirect evaluation method for deterioration assessment of drinking water pipes (상수도 노후도 평가를 위한 수정 간접평가법)

  • Kwon, Hyuk Jaea
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.697-703
    • /
    • 2023
  • In this study, a modified indirect evaluation method was developed to predict the deterioration level of water pipes. The accuracy of the modified method was verified by comparing it with the direct method. The weights of index were adjusted by reducing the weight of water quality corrosion, soil corrosion, lay depth and road type according to the importance of the existing evaluation factors and adding the weight of pipe thickness. In the results, the weight of pipe thickness was determined to be 0.1530. Comparing with the direct evaluation method, the accuracy of the modified indirect evaluation method increased by 31.03% compared to the indirect evaluation method. The modified indirect evaluation method will be able to select relatively old pipes more accurately and efficiently than the existing indirect evaluation method when prioritizing the improvement of old water pipes.

Hydrochemistry of Groundwater at Natural Mineral Water Plants in the Okcheon Metamorphic Belt (옥천계변성암 지역의 먹는샘물 지하수의 수리지구화학적 특성)

  • 추창오;성익환;조병욱;이병대;김통권
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.3
    • /
    • pp.93-107
    • /
    • 1998
  • Because of its stable quantity and quality, groundwater has long been a reliable source of drinking water for domestic users. Rapid economic growth and rising standards of living have in recent years put severe demands on drinking water supplies in Korea. Groundwaters that are currently being used for natural mineral water were hydrochemically evaluated and investigated in order to maintain their quality to satisfy strict health standards. There exist 15 natural mineral water plants in the Okcheon metamorphic belt. Characteristics of groundwaters are different from those of other areas in that electrical conductivity, hardness, contents of Ca, Mg and $HCO_3$are relatively high. The content of major cations is in the order of Ca>Mg, Na>K, whereas that of major anions shows the order of $HCO_3$>$SO_4$>Cl>F. The fact that the Ca-Mg-HCO$_3$type is mostly predominant among water types reflects that dissolution of carbonates that are abundantly present in the metamorphic rocks plays an important part in groundwater chemistry. Representative correlation coefficients between chemical species show Mg-$HCO_3$(0.92), Ca-$HCO_3$(0.88), Ca-Mg(0.80), Ca-Cl(0.78), Mg-$SO_4$(0.78), Ca-$SO_4$(0.71), possibly due to the effect by dissolution of carbonates, gypsum or anhydrite. Determinative coefficients between some chemical species represent a good relationship, especially for EC-(K+Na+Ca), Ca-$HCO_3$, Ca-Mg, indiacting that they are similar in chemical behaviors. According to saturation index, most chemical species are undersaturated with respect to major minerals, except for some silica phases. Groundwater is slightly undersaturated with respect to calcite and dolomite, whereas it is still greatly undersaturated with respect to gypsum, anhydrite and fluorite, Based on the Phase equilibrium in the systems $NA_2$O-$Al_2$$O_3$-$SiO_2$-$H_2$O and $K_2$O-$Al_2$$O_3$-$SiO_2$-$H_2$O, it is clear that groundwater is in equilibrium with kaolinite, evolved from the stability area of gibbsite during water-rock interaction. It is expected that chemical evolution of groundwater continue to proceed with increasing pH by reaction of feldspars, with calcite much less reactive.

  • PDF

Assessment of Water Pollution by Discharge of Abandoned Mines (휴폐광산 지역에서 유출되는 하천수의 오염도 평가)

  • Kim Hee-Joung;Yang Jay-E.;Ok Yong-Sik;Lee Jai-Young;Park Byung-Kil;Kong Sung-Ho;Jun Sang-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.5
    • /
    • pp.25-36
    • /
    • 2005
  • Several metalliferous and coal mines, including Myungjin, Seojin and Okdong located at the upper watershed of Okdong stream, were abandoned or closed since 1988 due to the mining industry promotion policy. Thus these disposed an enormous amount of mining wastes without a proper treatment facilities, resulting in water pollution in the downstream areas. Acid mine drainage (AMD) and waste water effluents from the closed coal mines were very strongly acidic showing pH ranges of 2.7 to 4.5 and had a high level of Total Dissolved Solids (TDS) showing the ranges of 1,030 to 1,947 mg/L. Also heavy metal concentrations in these samples such as Fe, Cu, Cd and anion such as sulfate were very high. Concentrations of water soluble heavy metals in the Okdong streams were in the orders of Fe>Al>Mn>Zn>Cu>Pb>Cd, indicating Fe from the AMD and waste water effluents contributed greatly to the quality of water and soil in the lower watershed of Okdong stream. Copper concentrations in the effluents from the tile drainage of mine tailings dams were highest during the raining season. Water Pollution Index (WPI) of the surface water at the upper stream of Okdong river where AMD of the abandoned coal mines was flowed into main stream were in the ranges of 16.3 to 47.1. On the other hand, those at the mid stream where effluents from tailings dams and coal mines flowed into main stream were in the WPI ranges of 10.6 to 19.5. However, those at the lower stream were ranged from 10.6 to 14.9. These results indicated that mining wastes such as AMD and effluents from the closed mines were the major source to water pollution at the Okdong stream areas.

Analysis of Productivity in Rice Plant II Evaluation of Canopy Structure and Canopy Score (벼의 생산력(生産力) 분석(分析) II 생산구조(生産構造) 평가(評價)와 군낙평점(群落評點))

  • Park, Hoon;Kim, Yung Sup;Yoon, Jong Hyuk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.5 no.1
    • /
    • pp.9-15
    • /
    • 1972
  • Comparative analyses of canopy structure were conducted using newly bred high yield rice cultivars (IR 667-Suwon 213 and 214) and commercial varieties (Jinhung and Paldal) under the field condition. "Canopy score" as criteria of canopy structure was proposed. The results were summerized as follows: 1. IR667 line (IR8${\times}$Taichung Native 1${\times}$Yukara) showed lower canopy height, greater tiller openness, smaller leaf openness and leaf length ratio (flag leaf/3rd), shorter 4th and 5th internode length, greater diameter of 5th internode, consequently greater leaf area index, panicle weight and leaf weight ratio (leaf/leaf sheathculm) as merits, and greater leaf width, smaller leaf number(number of leaf/$m^2$)and specific leaf area($cm^2/g$) and faster destruction of canopy by senescence as demerits comparing with commercial varieties. 2. IR 667 line showed much higher "Canopy score", subsequently higher yield. 3. The quality of individual leaf was better in the commercial varieties indicating that the best combination for the better yield would be the leaf of commercial varieties with the structure of IR667 line.

  • PDF

A Geomorphological Study on the Locational Characteristics and Construction Method of Dolmens in Hyosanri·Daesinri (지석묘의 입지특성과 축조방식에 대한 지형학적 고찰 - 효산리·대신리를 중심으로 -)

  • PARK, Cheol-Woong;KIM, In-Cheol
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.3
    • /
    • pp.23-36
    • /
    • 2012
  • This study aims to think about the problem of dolmens: the reasons for the presence of dolmens and how to construct it, at the point of view of geographical and geomorphological. The subjects of this study is the dolmens which locate between at Dogok Hyosanri and Chunyang Daesinri Hwasoon-gun, Jeonlanamdo. The study areas in Hyosanri, Daesinri has been observed as follows. First, the long axis direction of Dolmen upper stone and the slope one are the same. Second, tor, block stream, hockey stick, etc. Third, Composition of the soil silt> sand> clay is distributed in the order. Forth, The soil of high quality silt and the roundness of angular, sub-angular-level and the high frequency, peaks of quarts and illite clay minerals show. Fifth, in the result of $SiO_2/Al_2O_3$, $SiO_2/R_2O_3$, and CIA(Chemical Index of Alteration), Hyosanri, Daesinri areas show mechanical weathering was dominant and chemical weathering environment was not being progressed. The blocks used in construction of dolmens had moved to the bottom of slopes by mass movement such as solifluction then them which had been placed in the position seem to be used by people of Bronze. Based on the above results, the process of construction of dolmens can be estimated as follows. They would dig up the ground under the upper stone of dolmens, put the supporting stone in the place, then dig up earth, place into remains, close the obturating stones, then heal up earth.

Types and Characteristics of Landslides in Danyang Geopark (단양 지질공원 내의 산사태 유형과 특징)

  • Seong-Woo Moon;Ho-Geun Kim;Yong-Seok Seo
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.427-438
    • /
    • 2023
  • We carried out a geological survey to classify the types of mass movement in Danyang Geopark (where various rock types are distributed) and analyzed the mechanical and hydraulic characteristics of landslide materials using a series of laboratory tests. Debris flows occurred in areas of limestone/marble, shale, and porphyroblastic gneiss, and limestone/marble landslides were distinguished from the others through the presence of karren topography. Soil tests showed that soil derived from weathered gneiss, which has a higher proportion of coarse grains, has a higher friction angle, lower cohesion, and larger hydraulic conductivity than soils from areas of limestone/marble, and shale. Rock failure mass movements occurred in areas of phyllite, sandstone, and conglomerate and were subdivided into plane failure, block-fall, and boulder-fall types in areas of phyllite, sandstone, and conglomerate, respectively. The shear strength of phyllite is much lower than that of the other types of rock, which have similar rock quality. The slake durability index of the conglomerate is similar to that of the other rock types, which have similar degrees of weathering, but differential weathering of the matrix and clasts was clearly observed when comparing the samples before and after the test. This study can help establish appropriate reinforcement and disaster prevention measures, which depend on the type of mass movement expected given the geological characteristics of an area.

Assessment of Hydrochemistry and Irrigation Water Quality of Wicheon Watershed in the Gyeongsangbuk-do (경상북도 위천수계의 수리화학적 특성 및 관개용수 수질평가)

  • Lee, Gi-Chang;Park, Moung-Sub;Kim, Jae-Sik;Jang, Tae-Kwon;Kim, Hyo-Sun;Lee, Hwa-Sung;Son, Jin-Chang
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.1
    • /
    • pp.36-43
    • /
    • 2020
  • BACKGROUND: Wicheon watershed has the largest irrigation area among the mid-watershed of Nakdong river. However, no investigation of irrigation water quality has been conducted on the Wicheon watershed, which evaluates the effects on the soil quality and crop cultivation. Therefore, this study aims to provide various assessments of water quality of Wicheon watershed as the scientific basic data for efficient agricultural activities. METHODS AND RESULTS: Water sampling was performed in five locations of the first tributaries of Wicheon. Wicheon watershed showed clean water quality with very low organic matters and safe water quality from metals at all points of investigation. It was estimated that the natural chemical components of Wicheon watershed were originated from water-rock interaction in Gibbs diagram. All samples were concentrated in the type of Ca-HCO3-Cl in the Piper diagram. The quality of irrigation water was evaluated with sodium adsorption ratio (SAR), residual sodium carbonate (RSC), permeability index (PI), and percent sodium (%Na). The values of these water quality indices were in the range of 0.37-0.67, -2.11--0.24, 41.13-84.52% and 11.28-21.84%, respectively, and were classified as good grades at all sites. CONCLUSION: The water quality of Wicheon watershed was very low in salt, indicating good irrigation water suitable for growing agricultural products. We hope that the results of this study will be used as the basic data for the cultivation of agricultural products and promotion of their excellence.

Technical Application and Analysis for Reduction of Water Loss in Water Distribution Systems (상수도 관망의 유수율 제고 기술의 적용 및 분석)

  • Kim, Ju-Hwan;Lee, Doo-Jin;Bae, Cheol-Ho;Woo, Hyung-Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.260-266
    • /
    • 2009
  • Non-revenue water reduction(NRW) technologies are implemented to evaluate and manage leakages scientifically in water distribution systems under local governments. A development of quantitative leakage indicator by measuring minimum night flow, pressure control policy by installation of PRV(pressure reducing valve) and the establishment of leakage prevention schemes by residual life modeling of deteriorated water pipes are reviewed and studied. Estimation models of allowable leakage are developed by measuring and analyzing minimum night flow at residential and commercial area in Nonsan city, which is suggested from UK water industry and can improve an existing leakage indicator for the evaluation of non-revenue water. Also, pressure control method is applied and analyzed to Uti distribution area in Sacheon city in the operation aspect. As results, $466\;m^3/day$ of leakage can be reduced and it is expected that 113million won of annual cost can be saved. In the part of corrosion velocity and residual life assessment, non-linear prediction models of residual thickness are proposed by assessment of corrosion velocity based on exposure years, soil and water quality etc., since the deteriorated water pipe play a major role to increase leakage. It is expected that collection data and analyzing results can be applied effectively and positively to reduce non-revenue water by accumulating surveying data and verifying the results in the business field of water distribution systems under local governments.

  • PDF

Comparison of Spectroscopic Characteristics and Chemical Oxygen Demand Efficiencies for Dissolved Organic Matters from Diverse Sources (기원별 용존 유기물의 분광특성 및 COD 산화율 비교)

  • Jung, Ka-Young;Park, Min-Hye;Hur, Jin;Lee, Seungyoon;Shin, Jae-Ki
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.589-596
    • /
    • 2009
  • The spectroscopic characteristics and chemical oxygen demand (COD) oxidation efficiencies were investigated for dissolved organic matters (DOM) from diverse sources, which may indirectly affect the concentrations and the quality of DOM found in watersheds. The DOM investigated for this study showed a wide range of the percent distributions of refractory organic matter (R-OM) from 8 to 100%. Relatively high R-OM distributions were observed for the DOM with the source of head water, sediments, paddy soils, field soils, and treated sewage whereas the DOM from livestock waste, reed, weeds, algae, and attached algae exhibited lower R-OM percent distributions. The percent distribution of R-OM had positive correlations with specific UV absorbance (SUVA) and humidification indices (HIX) of DOM. The investigated DOM was classified into four different source groups (i.e., biota, vegetables, soils, sediments) by comparing the synchronous fluorescence spectra. The DOM group from biota source was characterized by a prominent presence of protein-like fluorescence (PLF) whereas fulvic-like fluorescence (FLF) was additionally observed for vegetable-source DOM. FLF became significant for the DOM from both soils and sediments although no PLF was found for soil-derived DOM. A range of COD oxidation efficiency was observed for the various DOM, ranging from 36 to 94% and from 65 to 125% for $COD_{Mn}$ and $COD_{Cr}$, respectively. The results indicate that $COD_{Cr}$ reflects the higher OM concentration than $COD_{Mn}$. However, 95% confidence intervals of the COD oxidation efficiencies were similar for the two types of COD, suggesting that $COD_{Cr}$ may not be the superior OM index to $COD_{Mn}$ in terms of the variability of the oxidation efficiency. No significant correlations were obtained between COD oxidation efficiencies and the spectroscopic characteristics of DOM for this study.