• Title/Summary/Keyword: Soil properties

Search Result 4,300, Processing Time 0.031 seconds

Application of Decision Trees for Prediction of Sugar Content and Productivity using Soil Properties for Actinidia arguta 'Autumn Sense'

  • Ha, Si-Young;Jung, Ji-Young;Park, Young-Ki;Kweon, Gi-Young;Lee, Sang-Yoon;Park, Jae-Hyeon;Yang, Jae-Kyung
    • Journal of agriculture & life science
    • /
    • v.53 no.5
    • /
    • pp.37-49
    • /
    • 2019
  • Environmental conditions are important in increasing the fruit sugar content and productivity of the new cultivar Autumn Sense of Actinidia arguta. We analyzed various soil properties at experimental sites in South Korea. A Pearson's correlation analysis was performed between the soil properties and sugar content or productivity of Autumn Sense. Further, a decision tree was used to determine the optimal soil conditions. The difference in the fruit size, sugar content, and productivity of Autumn Sense across sites was significant, confirming the effects of soil properties. The decision tree analysis showed that a soil C/N ratio of over 11.49 predicted a sugar content of more than 7°Bx at harvest time, and soil electrical capacity below 131.83 µS/cm predicted productivity more than 50 kg/vine at harvest time. Our results present the soil conditions required to increase the sugar content or productivity of Autumn Sense, a new A. arguta cultivar in South Korea.

Efficiency of Various Nutritional Sources to Improve Physical Properties of Saline-Sodic Soil

  • Noor-Us-Sabah, Noor-Us-Sabah;Sarwar, Ghulam;Ibrahim, Muhammad;Tahir, Mukkram Ali;Iftikhar, Yasir;Haider, Muhammad Sajjad;Han, Kyung-Hwa;Ha, Sang-Keun;Zhang, Yong-Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.93-97
    • /
    • 2012
  • This study was conducted to evaluate the efficiency of various inorganic and organic materials to improve physical properties of soil. Saline sodic soil (saturation percentage = 40.36%, $EC_e=5.15dS\;m^{-1}$, $pH_s=8.70$, $SAR=18.84(m\;mol\;L^{-1})^{1/2}$, bulk density =$1.49Mg\;m^{-3}$) was collected, brought to wire house and filled in pots after laboratory analysis for various parameters. Different sources of organic nutrients like farm manure (FM), press mud, compost, poultry manure and sesbania green manure were analyzed for their chemical composition. The experiment comprised of 12 treatments replicated thrice; $T_1$: control (recommended NPK), $T_2:{\frac{1}{2}}$ recommended NPK, $T_3$: FM at 1.5% by soil weight, $T_4$: pressmud at 1.5% by soil weight, $T_5$: compost at 1.5% by soil weight, $T_6$: poultry manure at 1.5% by soil weight, $T_7$: sesbania green manure at 1.5% by soil weight, $T_8:T_2$ + FM at 0.75% by soil weight, $T_9:T_2$ + pressmud at 0.75% by soil weight, $T_{10}:T_2$ + compost at 0.75% by soil weight, $T_{11}:T_2$ + poultry manure at 0.75% by soil weight, $T_{12}:T_2$ + sesbania green manure at 0.75% by soil weight. These treatments were applied using completely randomized (CR) design and appropriate time was given to decompose these organic nutritional sources. Seeds of wheat cultivar Sahar-2006 were sown. After harvesting the wheat, soil samples were collected from each pot and analyzed for various physical properties like bulk density, porosity and saturation percentage. An improvement in physical properties (bulk density, porosity and saturation percentage) of soil was noticed with the application of various organic nutritional sources but role of compost alone ($T_5$) remained prominent.

Influence of Physicochemical Properties on Cesium Adsorption onto Soil (토양의 물리화학적 특성이 세슘 흡착에 미치는 영향)

  • Park, Sang-Min;Lee, Jeshin;Kim, Young-Hun;Lee, Jeung-Sun;Baek, Kitae
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.1
    • /
    • pp.27-32
    • /
    • 2017
  • Cesium (Cs) generated by nuclear accidents is one of the most hazardous radionuclides because of its gamma radiation and long half-life. Especially, when Cs is exposed on the soil environments, Cs is mainly adsorbed on the topsoil and is strongly combined with tiny soil particle including clay minerals. The adsorption of Cs onto soil can vary depending on various physicochemical properties of soil. In this study, the adsorption characteristics between soil and Cs were investigated according to various physicochemical properties of soil including organic matter contents, cation exchange capacity (CEC), soil particle size, and the types of clay minerals. Soil organic matter inhibited the adsorption of Cs onto the soil because organic matter was blocking the soil surface. In addition, it was estimated that the CEC of the soil influenced the adsorption of Cs onto the soil. Moreover, more Cs was adsorbed as the soil particles size decreased. It was estimated that Cs was mostly adsorbed onto the topsoil, this is related to the clay mineral. Therefore, soil organic matter, CEC, soil particle size, and clay minerals are considered the key factors that can influence the adsorption characteristics between soil and Cs.

Characteristics of Fertility of Cucumber Cultivated Soils at Controlled Horticulture in Chungnam Province

  • Choi, Moon-Tae;Yun, Yeo-Uk;Lee, Jin-Il;Lee, Jong-Eun;Jung, Suck-Kee;Nam, Yun-Gyu;Lee, Young Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.4
    • /
    • pp.262-268
    • /
    • 2014
  • The management of soil chemical properties is very important to sustainable agriculture of many horticultural crops, including cucumber. This study was conducted to find the optimal soil properties of environmentally friendly agriculture in controlled horticulture. Soil chemical properties of 267 samples were collected from soil in Chungnam Province. The average of pH, EC, OM, available $P_2O_5$, exchangeable K, Ca, and Mg was 6.1, $5.38dS\;m^{-1}$, $34g\;kg^{-1}$, $1,321mg\;kg^{-1}$, $1.50cmol_c\;kg{-1}$, $10.3cmol_c\;kg{-1}$, and $3.4cmol_c\;kg{-1}$, respectively. The organic matter content in silty clay loam was significantly higher than in the other soil textures, whereas the pH, EC, exchangeable K, and Mg in loamy fine sand showed significantly lower among soil textures. The EC value and exchangeable Mg concentration were highest in mountain foot-slope soils. The frequency distribution within optimum range of soil chemical properties was 26.2%, 30.3%, 2.3%, 3.8%, 3.4%, and 6.7% for pH, OM, available $P_2O_5$, exchangeable K, Ca, and Mg, respectively. Especially, excessive portion of available $P_2O_5$ and exchangeable Ca were 94.0% and 94.4%, respectively. The EC value and organic matter content of soil samples were positive correlation with all chemical properties except soil pH. In principle component analysis of chemical properties in soil samples, the percentage of variance explained by PC 1 was 52.2%, while PC 2 explained 21.3% of the variance, for a cumulative total of 73.5%. In conclusion, these results are considered to improve soil nutrient management for sustainable controlled horticulture.

Shearing Properties of Fiber-Reinforced Soil (섬유혼합 보강토의 전단특성)

  • 조삼덕;김진만
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.10a
    • /
    • pp.23-28
    • /
    • 1993
  • Shearing properties of soil reinforced with discrete randomly oriented inclusions depend on soil density, particle size, grading, fiber length, tensile strength and stiffness of fiber, mixing ration of fiber, confining stress, etc.. In this paper the effects of those various factors on shear strength of the fiber-reinforced soil was evaluated through triaxial tests and uniaxial tests. Tests were performed on two sandy soils and one silty soil with inclusions in varing lengths, contents and tensile strengths and tested at different confining stresses in triaxial test. From the experimental results, it was investigated if there is an optimal range of fiber lengths and fiber contents for the tested soils.

  • PDF

Evaluation of Measured Seismic Responses of the Hualien LSST Model Structure (화련 대형내진시험모델의 계측지진응답 평가)

  • 현창헌
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.249-256
    • /
    • 1997
  • This paper deals with the prediction and the evaluation of the measured seismic responses of the Hualien large-scale seismic test soil-structure system. The predicted analysis was carried out for the model structure by the computer code SASSI utilizing soil properties derived from geotechnical investigations and correlation analysis of recorded earthquake responses of soil. Utilizing the soil properties, seismic responses were predicted and compared with measured ones. The nonlinear effects of soil on structural responses were also evaluated.

  • PDF

The Effect of Soil Physico-chemical Properties on Rhizome Rot and Wilt Disease Complex Incidence of Ginger Under Hill Agro-climatic Region of West Bengal

  • Sharma, B.R.;Dutta, S.;Roy, S.;Debnath, A.;Roy, M. De
    • The Plant Pathology Journal
    • /
    • v.26 no.2
    • /
    • pp.198-202
    • /
    • 2010
  • A study was conducted to find out the relationship of physico-chemical properties (viz. organic carbon(OC), pH, electrical conductivity, nitrogen, phosphorus and potassium content) of ginger growing soil with incidence percentage of rhizome rot and wilt disease complex of ginger. Organic carbon content and pH of the ginger soil contributed significantly (93%) in the prediction of ginger rhizome rot and wilt disease complex incidence with negative correlation. Soil having weak acidic reaction with OC percent greater than 2.25 was observed to have the lower average incidence of the disease.

Soil Properties Affecting the Adsorption of Lead (Pb의 흡착에 영향을 미치는 토양의 특성)

  • 박상원
    • Journal of Environmental Science International
    • /
    • v.8 no.1
    • /
    • pp.69-74
    • /
    • 1999
  • Soil properties which affect the retention of Pb(I) were investigated in the laboratory. It was determined, through selective removal, that organic matter and Fe-oxides are of lesser importance in influencing Pb retention than are soil clay minerals. The following trend : clays > organic matter > Fe-oxides represents the relative importance of each constituent in the adsorption of Pb by soils. The consistently greater Pb uptake by surface over subsurface samples was apparently due to differences in organic matter content, inasmuch as organic matter removal from both resulted in similar adsorption characteristics. All five soils stooled exhibited a pH-dependent trend of adsorption. The extent of Pb adsorption was least at low pH values(4~5), was maximum in the neutral pH range, and leveled off or diminished under more alkaline conditions. There was no strong correlation between Pb uptake and soil cation exchange capacity as routinely measured by the NH$_4$OAc method. A knowledge of clay mineralogy in conjunction with soil pH is suggested as being the most reliable guide to predicting Pb retention by soils.

  • PDF

Development of early strength type hardening Agent for Surface Soil Stabilization Method (연약지반 표층혼합처리를 위한 조기강도 발현형 고화재의 개발)

  • Ki, Tae-Kyoung;Kim, Ki-Hoon;Lee, Byung-Ki;Kwon, O-Bong;Kim, Kyoung-Min;Park, Sang-Joon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.80-81
    • /
    • 2013
  • There is the increasing number of constructing soil or structure on the soft ground during public works. Usually cement or slag cement has been the traditional material for surface soil stabilization method. Recently, early strength development properties of hardening agent is required for driving abilities of execution equipment and shortening of the construction time. Therefore, the purpose of this study is to develop the early compressive strength hardening agent for surface soil stabilization. The study was confirmed performance and availability of hardening agent using early strength type cement and industrial by-product minerals through early strength development properties in accordance with water cement ratio, content of hardening agent for soft soil.

  • PDF

Long-Term Investigation of Regional Topographic Effects on Soil Chemical Properties and Heavy Metal Concentrations in Paddy Fields

  • Ahn, Byung-Koo;Kang, Seong-Soo;Shin, Jae-Yeon;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.738-743
    • /
    • 2012
  • Topographic conditions of agricultural fields work as a important factor to identify different soil properties. This study was conducted to investigate the selected soil chemical properties and the concentrations of heavy metals, Cd, Cr, Pb, Cu, Ni, and Zn, in the paddy fields of different topographic areas at four year intervals from 1999 to 2011. Three-hundred soil sampling sites in the paddy fields were selected from the different topographic areas that were local valley and fans, fluvio-marine deposits, alluvial plains, and diluvial terraces. The mean values of soil pH ranged 5.7~5.8 that were within optimal range for rice cultivation. The mean values of other properties such as soil organic matter (SOM) content, the concentrations of exchangeable cations, $K^+$, $Ca^{2+}$, and $Mg^{2+}$, and available silicate concentration were lower or close to the optimal values, but the mean concentrations of available phosphorus were exceeded the range of optimal value, $80{\sim}120mg\;kg^{-1}$, in many paddy fields. In particular, The concentrations of available phosphorus in the paddy fields of local valley and fans, alluvial plains, and fluvio-marine plains were mostly declined. However, in diluvial terrace areas, the phosphorus concentrations unexpectedly increased; furthermore, they were significantly higher than those in other topographic areas. The mean concentrations of 0.1 M HCl-extractable heavy metals, Cd, Cr, Pb, Cu, Ni, and Zn, in the paddy fields were slightly and gradually declined during the study years, but the Pb concentrations were not statistically changed. In addition, the concentrations of heavy metals were widely ranged depending on the different sampling sites. Nevertheless, the concentrations of heavy metals were significantly lower than the levels of Soil Contamination Warning Standard (SCWS) for agricultural lands (1-region) presented in Soil Environment Conservation Law (SECL).