• 제목/요약/키워드: Soil properties

검색결과 4,300건 처리시간 0.029초

Relationship between Plant Species Covers and Soil Chemical Properties in Poorly Controlled Waste Landfill Sites

  • Kim, Kee-Dae;Lee, Eun-Ju
    • Journal of Ecology and Environment
    • /
    • 제30권1호
    • /
    • pp.39-47
    • /
    • 2007
  • The relationships between the cover of herbaceous species and 15 soil chemical properties (organic carbon contents, total N, available P, exchangeable K, Na, Ca and Mg, HCl-extractable Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in nine poorly controlled waste landfill sites in Korea were examined by correlation analysis and multiple regression equations. Species showed different patterns of correlation between their cover values and soil chemical properties. The cover of Ambrosia artemisiifolia var. elatior, Aster subulatus var. sandwicensis and Erechtites hieracifolia were negatively correlated with the contents of Fe, Mn and Ni within landfill soils. Total cover of all species in quadrats was positively correlated with the contents of Cd and negatively correlated with the contents of Mn and Fe from stepwise regression analysis with 15 soil properties. Canonical correspondence analysis demonstrated that the distribution of native and exotic plants on poorly controlled landfills was significantly influenced by the contents of Na and Ca in soils, respectively.

Predicting soil-water characteristic curves of expansive soils relying on correlations

  • Ahmed M. Al-Mahbashi;Muawia Dafalla;Mosleh Al-Shamrani
    • Geomechanics and Engineering
    • /
    • 재33권6호
    • /
    • pp.625-633
    • /
    • 2023
  • The volume changes associated with moisture or suction variation in expansive soils are of geotechnical and geoenvironmental design concern. These changes can impact the performance of infrastructure projects and lightweight structures. Assessment of unsaturated function for these materials leads to better interpretation and understanding, as well as providing accurate and economic design. In this study, expansive soils from different regions of Saudi Arabia were studied for their basic properties including gradation, plasticity and shrinkage, swelling, and consolidation characteristics. The unsaturated soil functions of saturated water content, air-entry values, and residual states were determined by conducting the tests for the entire soil water characteristic curves (SWCC) using different techniques. An attempt has been made to provide a prediction model for unsaturated properties based on the basic properties of these soils. Once the profile of SWCC has been predicted the time and cost for many tests can be saved. These predictions can be utilized in practice for the application of unsaturated soil mechanics on geotechnical and geoenvironmental projects.

Effect of Winter Crop Cultivation on Soil Organic Carbon and Physico-chemical Properties Under Different Rice-forage Cropping Systems in Paddy Soil

  • Yun, Sun-Gang;Lee, Chang-Hoon;Ko, Byong-Gu;Park, Seong-Jin;Kim, Myung-Sook;Kim, Ki-Yong
    • 한국토양비료학회지
    • /
    • 제49권4호
    • /
    • pp.335-340
    • /
    • 2016
  • Soil organic carbon plays an important role on soil physico-chemical properties and crop yields in paddy soil. However, there is little information on the soil organic carbon under different forage cultivation during winter season in rice paddy. In this study, we investigated the soil organic carbon and physico-chemical properties in 87 fields of paddy soil cultivated with Barley, rye, and Italian ryegrass (IRG) as animal feedstock during winter season. Organic carbon was 12.9, 14.3, and $16.9g\;C\;kg^{-1}$ in soil with barley, rye, and IRG cultivation, respectively. Among rice-forage cultivation systems, the rice+IRG cropping system was 19.5% higher than in the mono-rice cultivation. Bulk density ranged from 1.17 to $1.28g\;cm^{-3}$ irrespective of cropping systems, and had strongly negative correlation with the soil organic carbon in the rice+IRG cropping system. Carbon storage in rice+IRG cropping systems was average $29.6Mg\;ha^{-1}$ at 15 cm of soil depth, which was 20.4 and 10.3% higher than those of barley and rye cultivation. Increasing carbon storage in paddy soil contributed to the fertility for following rice cultivation. This results indicated that IRG cultivation during winter season could be an alternative and promising way to enhance soil organic carbon content and fertility of paddy soil.

Stabilization of oily contaminated clay soils using new materials: Micro and macro structural investigation

  • Ghiyas, Seyed Mohsen Roshan;Bagheripour, Mohammad Hosein
    • Geomechanics and Engineering
    • /
    • 제20권3호
    • /
    • pp.207-220
    • /
    • 2020
  • Clay soils have a big potential to become contaminated with the oil derivatives because they cover a vast area of the earth. The oil derivatives diffusion in the soil lead to soil contamination and changes the physical and mechanical properties of the soil specially clay soils. Soil stabilization by using new material is very important for geotechnical engineers in order to improve the engineering properties of the soil. The main subjects of this research are a- to investigate the effect of the cement and epoxy resin mixtures on the stabilization and on the mechanical parameters as well as the microstructural properties of clay soils contaminated with gasoline and kerosene, b- study on the phenomenon of clay concrete development. Practical engineering indexes such as Unconfined Compressive Strength (UCS), elastic modulus, toughness, elastic and plastic strains are all obtained during the course of experiments and are used to determine the optimum amount of additives (cement and epoxy resin) to reach a practical stabilization method. Microstructural tests were also conducted on the specimens to study the changes in the nature and texture of the soil. Results obtained indicated that by adding epoxy resin to the contaminated soil specimens, the strength and deformational properties are increased from 100 to 1500 times as that of original soils. Further, the UCS of some stabilized specimens reached 40 MPa which exceeded the strength of normal concrete. It is interesting to note that, in contrast to the normal concrete, the strength and deformational properties of such stabilized specimens (including UCS, toughness and strain at failure) are simultaneously increased which further indicate on suitability and applicability of the current stabilization method. It was also observed that increasing cement additive to the soil has negligible effect on the contaminated soils stabilized by epoxy resin. In addition, the epoxy resin showed a very good and satisfactory workability for the weakest and the most sensitive soils contaminated with oil derivatives.

깊이별 지반특성변화가 강우침투에 의한 사면표층 파괴에 미치는 영향 (Effect of Depth-Variant Soil Properties on Shallow Failure of Slope during Rain Infiltration)

  • 박가현;김지영;정충기;김경석
    • 한국지반공학회논문집
    • /
    • 제30권6호
    • /
    • pp.41-49
    • /
    • 2014
  • 집중강우 시에는 사면의 얕은 심도에서 파괴가 빈번하게 발생한다. 사면의 표층 지반은 심도에 따라서 조밀해지는 특성이 있으며 지반의 투수특성과 강도특성도 달라지므로 강우시 사면의 얕은 심도에서 발생하는 파괴의 원인분석과 안정해석은 이러한 지반특성 변화를 고려할 필요가 있다. 본 연구에서는 사면의 표층 부근의 지반특성 변화가 강우시 사면의 안정성에 미치는 영향을 수치해석적으로 분석해 보고자 하였으며, 표층 근처에서 심도에 따라 구한 지반특성 값을 적용하는 방식에 따라 강우침투와 사면안정해석 결과의 차이를 비교해 보았다. 실제 강우시 파괴가 발생한 사면을 대상으로 사면의 표층에서 심도별로 시료를 채취하여 전단강도와 투수특성 등 지반특성을 구하였으며, 파괴를 유발한 강우기록을 적용하여 침투해석과 안정해석을 실시하였다. 해석결과 깊이별 지반의 특성 변화를 고려한 경우와 단일지층으로 가정하여 고려하는 방식에 따라 간극수압 분포, 예상파괴면, 안전율 변화에 차이가 있는 것으로 나타났으며, 깊이별 지반 특성 변화를 고려하는 경우가 실제 파괴거동과 유사한 결과를 나타내었다. 이러한 결과는 강우침투에 의한 표층파괴현상을 규명하고자 하는 경우 지반의 심도별 지반특성 변화를 고려할 필요가 있음을 의미한다.

훼손 수목의 이식을 위한 토양의 물리·화학적 특성 분석과 개선 방안 (Analysis and Improvement of Soil Physical and Chemical Properties for Transplantation of Damaged Trees)

  • 김혜수;김정호;문윤정;이선미
    • 환경영향평가
    • /
    • 제31권6호
    • /
    • pp.423-437
    • /
    • 2022
  • 환경영향평가서 작성 및 검토 매뉴얼에 따라 훼손되는 수목의 일부를 이식하고 있다. 수목이 원래 서식하고 있는 산림에서 가이식장과 최종 이식장으로 이식하는 과정에서 고사하거나 생육이 불량한 등의 문제점이 지속적으로 제기되고 있다. 이 연구의 목적은 가이식장과 최종 이식장의 토양 특성을 파악하여 기존에 서식하던 산림 토양과의 차이를 분석하고, 이식한 수목의 생육에 적합한 토양으로 개선하는 방안을 제시하는 것이다. 10개의 환경영향평가 사업을 대상으로, 원래의 서식지인 주변의 산림지역, 훼손수목의 일부를 임시로 이식하고 있는 가이식장, 공사가 완료된 후 최종 이식을 하게 되는 공사장을 대표하는 지점에서 각각 2개씩, 총 60개의 토양을 샘플링하여 물리적 특성과 화학적 특성을 분석하였다. 물리적 특성 중에서 투수계수, 유효수분율, 경도, 화학적 특성 중에서 산도, 유기물함량, 전질소, 유효인산에서 집단 간 유의한 차이가 있는 것으로 나타났다. 공사장의 토양은 공사 장비로 인한 답압으로 주변의 산림보다 경도가 높고, 모래 함량이 많아 투수계수는 높으며 유효수분율은 낮아 식물이 필요한 토양 내 수분을 보유하지 못하고 배수되는 양이 많다. 경도가 높은 토양의 공극량을 증가시키고 물리적 구조를 개선하기 위하여 경운을 실시할 필요가 있다. 또한 토양의 물리성과 화학성을 함께 개선하기 위하여 토양 내 부숙된 유기물을 첨가한 후 우드칩이나 낙엽으로 표면을 덮어주는 것이 필요하다.

RS 기법을 이용한 토양수분과 토양 색에 관련된 토양의 분광반사 (Spectral Reflectance of Soils Related to the Interaction of Soil Moisture and Soil Color Using Remote Sensing Technology)

  • 박종화
    • 한국농공학회지
    • /
    • 제45권5호
    • /
    • pp.77-84
    • /
    • 2003
  • Recent advances in remote sensing techniques provide the potential for monitoring soil color as well as soil moisture conditions at the spatial and temporal scales required for detailed local modeling efforts. Soil moisture as well as soil color is a key feature used in the identification and classification of soils. Soil spectral reflectance has a direct relationship with soil color, as well as to other parameters such as soil moisture, soil texture. and organic matter. We evaluate the influence of seven soil properties, soil color and soil moisture, on soil spectral reflectance. This paper presents the results obtained from the ground-truth spectral reflectance measurements in the 300-1100 nm wavelength range for various land surfaces. The results suggest that the reflectance properties of soils are related to soil color, soil texture, and soil moisture. Increasing soil moisture content generally decreases soil reflectance which leads to parallel curves of soil reflectance spectra across the entire shortwave spectrum. We discuss the relationships between the soil reflectance and the Munsell Soil Color Charts which contain standard color chips with colors specified by designations for hue, value, and chroma.

고랭지 성토지에서 제오라이트 처리가 감자생육과 토양특성 변화에 미치는 영향 (Changes of Potato cv, Superior Growth and Soil Properties in Highland Mounding-soil by Treatment of Zeolite)

  • 허봉구;신관용
    • 한국작물학회지
    • /
    • 제45권3호
    • /
    • pp.167-170
    • /
    • 2000
  • 기후가 냉량하고 토양의 유실이 많은 고랭지의 성토한 포장에서 관행구, 화학성개량구, 제오라이트구 등 3개처리를 하여 감자를 재배한 결과 감자생육 및 토양특성 변화는 다음과 같다. 1. 성토재료는 양질사토로서 유기물과 인산함량 등 토양의 이화학성이 낮았다. 2. 감자생육은 제오라이트구에서 가장 좋았으며 수량도 관행구에 비하여 3.7% 증수되었으나 전국 평균수량에는 미치지 못하였다. 3. 감자 괴경의 비대솔은 파종후 60-70일후에는 증가율이 감소되는데 수확시까지 제오라이트 처리구의 괴경비대율이 비교적 컸다. 4. 감자수확수 토양의 유기물과 인산함량은 시험전에 비해 크게 증가하였으며 처리구별로는 제오라이트 처리구가 컸다.

  • PDF

Long-term Variations of Chemical Properties in Controlled Horticultural Soils of Gyeongnam Province

  • Lee, Young-Han;Lee, Seong-Tae;Hong, Kang-Pyo;Lee, Sang-Dae;Kim, Je-Hong;Ok, Yong-Sik;Kim, Min-Keun;Kim, HyeRan
    • 한국토양비료학회지
    • /
    • 제46권5호
    • /
    • pp.308-312
    • /
    • 2013
  • The monitoring of chemical dynamic changes in controlled horticultural lands is very important for agricultural sustainability. Field monitoring was performed to evaluate the soil chemical properties of 200 controlled horticultural soil samples in Gyeongnam province every 4 years from 2000 to 2012. Soil chemical properties such as pH, amount of organic matter, available phosphate, nitrate nitrogen, and exchangeable potassium, calcium, magnesium, and sodium were analyzed. The amount of exchangeable calcium and soil pH were significantly higher in 2012 than in 2000. In 2012, the frequency distribution for values of pH, organic matter, available phosphate, and exchangeable potassium, calcium, and magnesium that were within the optimum range was 16.0%, 22.5%, 11.5%, 3.5%, 2.5%, and 5.0%, respectively. Especially, available phosphate and exchangeable calcium were excess level with portions of 76.0% and 96.5%, respectively. These results indicated that a balanced management of soil chemical properties can reduce the amount of fertilizer applied for sustainable agriculture in controlled horticultural lands.

축구경기장 토양의 물리적 특성과 잔디 마모특성 - 2002년 월드컵 인천경기장 모형돔을 대상으로 - (Physical Properties of Soil and Turfgrass Wear Characteristics of Soccer Fields - A Simulation of the Inchon 2002 World Cup Stadium -)

  • 심상렬;정대영
    • 한국조경학회지
    • /
    • 제30권1호
    • /
    • pp.96-104
    • /
    • 2002
  • This study was conducted to investigate physical properties of soil and turfgrass wear characteristics within turfgrasses inside or outside the stadium A 1/1000 scale model Inchon world cup soccer d[me was constructed for this test. Turfgrasses planted inside and outside the model dome were; Kentucky bluegrass(KB), Kentucky bluegrass + perennial ryegrass mixture (KB+PR), Kentucky bluegrass + tall fescue + perennial ryegrass mixture (KB+TF+PR), Zoysia japonica 'Anyangjungzii'(ZA) and Zoysia japonica 'Zenith\`(ZZ). The rootzone was constructed by the multi-layer method (United States Golf Association method). Traffic on turfgrasses was treated with a 120kg roller. Surface soil hardness, soil penetration and water infiltration values on cool-season grasses(KB, KB+PR, KB+TF+PR) was found to be better for soccer play compared to zoysiagrasses(ZA, ZZ). No big differences in surface soil hardness, soil penetration and water infiltration values were found between inside and outside of the model dome. Wear damage on cool-season grasses caused by the traffic treatment was low compared to zoysiagrasses. However, there was no difference in wear damage by the traffic treatment within cool-season grasses while wear damage on ZA was higher than on ZZ within zoysiagrasses. It could be concluded that physical properties and wear characteristics on cool-season grasses were much better for soccer play than on zoysiagrasses.