• Title/Summary/Keyword: Soil parameter

Search Result 714, Processing Time 0.026 seconds

Embankment and Excavation Behaviour with Shear Parameters of Soft Clayey Soil in FEM (점성토의 유한요소해석에서 전단파라미터에 따른 성토 및 굴착 거동)

  • Kim, Byung Il;Choi, Chanyong;Hong, Kang Han;Han, Sang Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.2
    • /
    • pp.5-17
    • /
    • 2018
  • In this study, the in-situ stress, strength and stress-strain characteristics with shear parameters (UU, CU, ${\bar{CU}}$) are analytically evaluated and the stability analyses are carried out under loading/unloading conditions. The in-situ stress and the stress-strain behaviour may become different according to input shear parameters in finite element analyses with construction step, Especially, if the internal friction angle in Mohr-Coulomb model is set to zero, the in-situ stress and the stress-strain behaviour might not be properly predicted. The results from CU parameter of total stress analysis have no significant difference with the results from CU of effective stress analysis. Therefore, in the numerical analysis for soft ground, CU parameters can be applied to predict in-situ stress and stress-strain behaviors. In addition, the calculation method was proposed to determine the shear parameter of Mohr-Coulomb model, which is corresponding to the shear strength equivalent to that of in-situ soil.

Green and Ampt Parameter Estimation Considering Temporal Variation of Physical Properties on Tilled Soil (경운토양의 물리적 특성변화를 고려한 Green And Ampt 매개변수의 추정)

  • 정하우;김성준
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.2
    • /
    • pp.120-129
    • /
    • 1991
  • This study refers to temporal variation of physical properties of tilled soil under natural rainfalls. Field measurements of porosity, average hydraulic conductivity and average capillary pressure head on a tilled soil were conducted by soil sampler and air-entry permeameter respectively at regular intervals after tillage. Temporal variation of these physical properties were analysed by cumulative rainfall energy since tillage. Field experiment was conducted on a sandy loam soil at Suwon durging April~July in 1989. The followings are a summary of this study results ; 1. Average porosity just after tillage was 0.548cm$^3$/cm$^3$. As cumulative rainfall energy were increased in 0.1070, 0.1755, 0.3849 J/cm$^2$, average porosity were decreased in 0.506, 0.4]95, 0.468m$^3$/cm$^3$ respectively. 2. Average hydraulic conductivity just after tillage was 45.42cm/hr. As cumulative rainfall energy were increased in 0.1755, 0.2466, 0.2978, 0.3849J/cm$^2$ average hydraulic conductivity were decreased in 15.34, 13.47, 9.58, 8.65cm/hr respectively. 3. As average porosity were decreased in 0.548, 0.506, 0.495, 0.468cm$^3$/cm$^3$ average capillary pressure head were increased in 6.1, 6.7, 6.9, 7.4cm respectively. 4. It was found that temporal variation of porosity, average hydraulic conductivity on a tilled soil might be expressed as a function of cumulative rainfall energy and average capillary pressure head might be expressed as a function of porosity. 5. The results of this study may be helpful to predict infiltration into a tilled soil more accurately by considering Temporal variation of physical properties of soil.

  • PDF

Site specific fragility modification factor for mid-rise RC buildings based on plastic energy dissipation

  • Merin Mathews;B.R. Jayalekshmi;Katta Venkataramana
    • Earthquakes and Structures
    • /
    • v.27 no.4
    • /
    • pp.331-344
    • /
    • 2024
  • The performance of reinforced concrete buildings subjected to earthquake excitations depends on the structural behaviour of the superstructure as well as the type of foundation and the properties of soil on which the structure is founded. The consideration of the effects due to the interaction between the structure and soil- foundation alters the seismic response of reinforced concrete buildings subjected to earthquake motion. Evaluation of the structural response of buildings for quantitative assessment of the seismic fragility has been a demanding problem for the engineers. Present research deals with development of fragility curve for building specific vulnerability assessment based on different damage parameters considering the effect of soil-structure interaction. Incremental Dynamic Analysis of fixed base and flexible base RC building models founded on different soil conditions was conducted using finite element software. Three sets of fragility curves were developed with maximum roof displacement, inter storey drift and plastic energy dissipated as engineering demand parameters. The results indicated an increase in the likelihood of exceeding various damage limits by 10-40% for flexible base condition with soft soil profiles. Fragility curve based on energy dissipated showed a higher probability of exceedance for collapse prevention damage limit whereas for lower damage states, conventional methods showed higher probability of exceedance. With plastic energy dissipated as engineering demand parameter, it is possible to track down the intensity of earthquake at which the plastic deformation starts, thereby providing an accurate vulnerability assessment of the structure. Fragility modification factors that enable the transformation of existing fragility curves to account for Soil-Structure Interaction effects based on different damage measures are proposed for different soil conditions to facilitate a congenial vulnerability assessment for buildings with flexible base conditions.

Proposition Empirical Equations and Application of Artificial Neural Network to the Estimation of Compression Index (압축지수의 추정을 위한 인공신경망 적용과 경험식 제안)

  • 김병탁;김영수;배상근
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.25-36
    • /
    • 2001
  • The purpose of this paper is to discuss the effects of soil properties such as liquid limit, water content, etc. on the compression index and to propose the empirical equation of compression index far regional clay and to verify the application Back Propagation Neural Network(BPNN). The compression index values obtained from laboratory tests are in the range of 0.01 to 3.06 for clay soils sampled in eleven regions. As the compare with the results of laboratory test and the predicted compression index value from the proposed empirical equations, the results of empirical equations including single soil parameter have a possibility to be overestimated. Also, the results of empirical equations including multiple soil parameters closed to the measured value more than that of empirical equations including single soil parameter, but the standard error for measured value obtained larger than 0.05. For these reasons, the empirical equations including single or multiple soil parameters proposed base on the results of laboratory test and the determination coefficient is up to 0.89. The result of BPNN shows that correlation coefficient and standard error between test and neural network result is larger than 0.925 and smaller than 0.0196, which means high correlativity, respectively. Especially, the estimated result by neural network, using only three parameters such as natural water content, dry unit weight and in-situ void ratio among various factors is available to the estimation of compression index and the correlation coefficient is 0.974. This result verified the possibility that if BPNN use, the compression index can be predicted by the parameters, which obtained from simplex field test.

  • PDF

Evaluation of Lateral Flow in Soft Ground under Embankment (성토하부 연약지반의 측방유동 평가)

  • Hong, Won-Pyo;Cho, Sam-Deok;Lee, Jae-Ho;Lee, Kwang-Wu
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.93-100
    • /
    • 2006
  • The lateral soil movement in soft grounds undergoing improvement with application of vertical drains is analyzed on the basis of monitoring data at three fields, in which fifty six monitoring sites are located. Based on the investigations, the criterions are suggested to predict the lateral soil movement. In order to predict the lateral soil movement in the improved soft grounds by using the dimensionless parameter R suggested by Marche & Chapuis (1974), it is desirable that the maximum lateral displacement in the soft ground below the toe of embankment should be applied to calculate R instead of the lateral displacement at the toe of embankment. The lateral soil movement may increase rapidly, if the safety factor of slope is less than 1.4 in case of high ratio of H/B (Thickness of soft ground/Embankment width) such as 1.15 or is less than 1.2 in case of low ratio of H/B such as 0.05. Also, the graph suggested by Tschebotarioff (1973), which illustrates the relationship between the maximum height of embankments and the undrained shear strength of soft grounds, can be applied to the evaluation for the possibility of the lateral soil movement due to embankments on soft grounds.

Buckling Behaviors of Bucket Foundation for Offshore Wind Tower (해상풍력타워용 버켓기초의 좌굴거동)

  • Lee, Gye Hee;Tran, Duc Phu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.3
    • /
    • pp.123-127
    • /
    • 2013
  • In this study, the buckling behaviors during the installation of a bucket foundation for an offshore wind turbine tower were investigated. The objective structure was modeled by using a commercial structural analysis program, and the buckling behavior of the model was estimated as Batdorf's parameter Z in the design code. The surrounding soil conditions and loading condition were applied to the verified analysis model. The effects of parameters such as the longitudinal stiffeners and driven depth were estimated for the buckling capacity. As a result, it was found that the longitudinal stiffeners could drastically increase the buckling capacity in a specific region. In addition, the buckling capacities increased linearly when considering the effect of the surrounding soil.

Control strategy for the substructuring testing systems to simulate soil-structure interaction

  • Guo, Jun;Tang, Zhenyun;Chen, Shicai;Li, Zhenbao
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1169-1188
    • /
    • 2016
  • Real-time substructuring techniques are currently an advanced experimental method for testing large size specimens in the laboratory. In dynamic substructuring, the whole tested system is split into two linked parts, the part of particular interest or nonlinearity, which is tested physically, and the remanding part which is tested numerically. To achieve near-perfect synchronization of the interface response between the physical specimen and the numerical model, a good controller is needed to compensate for transfer system dynamics, nonlinearities, uncertainties and time-varying parameters within the physical substructures. This paper presents the substructuring approach and control performance of the linear and the adaptive controllers for testing the dynamic characteristics of soil-structure-interaction system (SSI). This is difficult to emulate as an entire system in the laboratory because of the size and power supply limitations of the experimental facilities. A modified linear substructuring controller (MLSC) is proposed to replace the linear substructuring controller (LSC).The MLSC doesn't require the accurate mathematical model of the physical structure that is required by the LSC. The effects of parameter identification errors of physical structure and the shaking table on the control performance of the MLSC are analysed. An adaptive controller was designed to compensate for the errors from the simplification of the physical model in the MLSC, and from parameter identification errors. Comparative simulation and experimental tests were then performed to evaluate the performance of the MLSC and the adaptive controller.

Analysis of Consolidation considering Uncertainties of Geotechnical Parameters and Reliability method (지반특성의 불확실성과 신뢰성 기법을 고려한 압밀해석)

  • Lee, Kyu-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.138-146
    • /
    • 2007
  • Geotechnical performance at the soft ground is strongly dependent on the properties of the soil beneath and adjacent to the structure of interest. These soil properties can be described using deterministic and/or probabilistic models. Deterministic models typically use a single discrete descriptor for the parameter of interest. Probabilistic models describe parameters by using discrete statistical descriptors or probability distribution density functions. The consolidation process depends on several uncertain parameters including the coefficients of consolidation and coefficients of permeability in vertical and horizontal directions. The implication of this uncertain parameter in the design of prefabricated vertical drains for soil improvement is discussed. A sensitivity analysis of the degree of consolidation and calculation of settlements to these uncertain parameters is presented for clayey deposits.

Dynamic interaction effects of buried structures on seismic response of surface structures

  • Sisman, Rafet;Ayvaz, Yusuf
    • Earthquakes and Structures
    • /
    • v.19 no.1
    • /
    • pp.1-16
    • /
    • 2020
  • This study presents an investigation of the dynamic interactions between a surface structure lying on two different soil deposits and a square-shaped buried structure embedded in the soil. To this end, a large number of numerical models are generated by using a well-known Finite Element Method software, i.e., OpenSEES. The interaction phenomenon is assumed to be affected by six different parameters. In the parametric study, these parameters are assumed to have various values in accordance with the engineering practices. A total of 1620 possible combinations of the parameter values are addressed in this study. 30 different numerical models are also generated as the 'free-field cases' to set a reference. The surface structure drift and acceleration amplifications are used as a measure to evaluate the dynamic interactions. The response (i.e., drifts and accelerations) amplifications are calculated as the ratio of the maximum surface structure response in any 'case' to the maximum surface structure response in corresponding free-field case. Variation of the response amplifications with any of the investigated parameters is addressed in this paper. The results obtained from the numerical analyses clearly reveal that the presence of a buried structure in the vicinity of a surface structure can cause both amplification and de-amplification of the surface structure responses, depending on the case parameters.

Numerical Analysis for the Effect of Ground and Groundwater Conditions on the Performance of Ground Source Heat Pump Systems (토양 및 지하수 조건이 지열공조시스템의 성능에 미치는 영향에 관한 수치 해석적 연구)

  • Nam, Yu-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.5
    • /
    • pp.321-326
    • /
    • 2011
  • Recently, ground source heat pump (GSHP) systems have been introduced in many modem buildings which use the annually stable characteristic of underground temperature as one of the renewable energy uses. However, all of GSHP systems cannot achieve high level of energy efficiency and energy-saving, because their performance significantly depends on thermal properties of soil, the condition of groundwater, building loads, etc. In this research, the effect of thermal properties of soil on the performance of GSHP systems has been estimated by a numerical simulation which is coupled with ground heat and water transfer model, ground heat exchanger model and surface heat balance model. The thermal conductivity of soil, the type of soil and the velocity of groundwater flow were used as the calculation parameter in the simulation. A numerical model with a ground heat exchanger was used in the calculation and, their effect on the system performance was estimated through the sensitivity analysis with the developed simulation tool. In the result of simulation, it founds that the faster groundwater flow and the higher heat conductivity the ground has, the more heat exchange rate the system in the site can achieve.