• Title/Summary/Keyword: Soil of wetland

Search Result 266, Processing Time 0.024 seconds

Characteristics of micro-plastics in stormwater sediment basin: Case study of J wetland

  • Jiyeol Im;Kyungik Gil
    • Membrane and Water Treatment
    • /
    • v.14 no.4
    • /
    • pp.147-153
    • /
    • 2023
  • Urbanization has been causing such new pollutants as micro-plastic, thus the environmental impact of new pollutants on ecosystem is rapidly increasing. When it comes to micro-plastic, a representative artificial trace pollutant, its risk has been increased at a much faster rate, however the depth study associated with stormwater sediment and wetland was relatively rare. In this research, soil samples from storm water sediment were analyzed for distribution characteristics of micro-plastics in the J wetland (registered as Ramsar wetland, May 2021 and a representative environmental site in South Korea). Analyzed soil samples found approximately 201 ± 93 particle/kg (based on unit weight, Total micro plastic particles / Total Sample weight) micro-plastics in the samples. When considering the total quantitative numbers in stormwater sediment in the entire area of the J wetland, over 15,000 micro-plastics were estimated to be contaminating such area. In addition, in terms of qualitative numbers, micro-plastics were contaminating the J wetland with 94.7 % ratio of styrofoam type (43.9%) and polyethylene type (50.8%). These research results can be used as base data sets for controlling micro-plastics in the J wetland.

Vegetation Structure of the Kungae Reclaimed Wetland in a Coastal Lagoon of East Sea, Korea (동해안 석호에서 군개 간척습지의 식생 구조)

  • Kim, Ja-Ae;Jo, Gang-Hyeon;Lee, Hyo-Hye-Mi
    • The Korean Journal of Ecology
    • /
    • v.24 no.1
    • /
    • pp.27-34
    • /
    • 2001
  • We described the vegetation of a disturbed lagoon wetland in relation to water and soil environments in Kungae lagoon reclaimed 30 years ago. Water depth and soil organic matter showed a great spatial heterogeneity in Kungae wetland which was changed into a freshwater marsh by the dike construction. Detrended canonical correspondence analysis suggested that differences in vegetation structure were primarily the result of variation in water depth or microtopography and soil organic matter Various emergent vegetations were developed in the wetland: species such as Phragmites australis, Calamagrostis epigeios, Carex dispalata and Lythrum anceps in a wide area, hydrophyes such as Typha angustifolia and Scirpus tabernaemontani at the low elevation with deep water, ruderals such as Bidens frondosa and Persicaria perfoliata near upland with much soil organic matter and sand-dune vegetation such as Carex kobomugi, Diodia tens, Pinus thunbergii and Potentilla egedei var. groenlandica at the high elevation. These results suggest that development of a prototype for wetland restoration from vegetation analysis of other natural lagoons and restoration of natural water tables and hydrologic connections between the diked wetland and the sea are important in the disturbed Kungae wetland.

  • PDF

Fungal Clusters and Their Uniqueness in Geographically Segregated Wetlands: A Step Forward to Marsh Conservation for a Wealth of Future Fungal Resources

  • Park, Jong Myong;Hong, Ji Won;Lee, Woong;Lee, Byoung-Hee;You, Young-Hyun
    • Mycobiology
    • /
    • v.48 no.5
    • /
    • pp.351-363
    • /
    • 2020
  • Here, we investigated fungal microbiota in the understory root layer of representative well-conserved geographically segregated natural wetlands in the Korean Peninsula. We obtained 574,143 quality fungal sequences in total from soil samples in three wetlands, which were classified into 563 operational taxonomic units (OTU), 5 phyla, 84 genera. Soil texture, total nitrogen, organic carbon, pH, and electrical conductivity of soil were variable between geographical sites. We found significant differences in fungal phyla distribution and ratio, as well as genera variation and richness between the wetlands. Diversity was greater in the Jangdo islands wetland than in the other sites (Chao richness/Shannon/Simpson's for wetland of the Jangdo islands: 283/6.45/0.97 > wetland of the Mt. Gariwang primeval forest: 169/1.17/0.22 > wetland of the Hanbando geology: 145/4.85/0.91), and this variance corresponded to the confirmed number of fungal genera or OTUs (wetlands of Jangdo islands: 42/283> of Mt. Gariwang primeval forest: 32/169> of the Hanbando geology: 25/145). To assess the uniqueness of the understory root layer fungus taxa, we analyzed fungal genera distribution. We found that the percentage of fungal genera common to two or three wetland sites was relatively low at 32.3%, while fungal genera unique to each wetland site was 67.7% of the total number of identified fungal species. The Jangdo island wetland had higher fungal diversity than did the other sites and showed the highest level of uniqueness among fungal genera (Is. Jangdo wetland: 34.5% > wetland of Mt. Gariwang primeval forest: 28.6% > wetland of the Hanbando geology: 16.7%).

Linear Spectral Mixture Analysis of Landsat Imagery for Wetland land-Cover Classification in Paldang Reservoir and Vicinity

  • Kim, Sang-Wook;Park, Chong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.3
    • /
    • pp.197-205
    • /
    • 2004
  • Wetlands are lands with a mixture of water, herbaceous or woody vegetation and wet soil. And linear spectral mixture analysis (LSMA) is one of the most often used methods in handling the spectral mixture problem. This study aims to test LSMA is an enhanced routine for classification of wetland land-covers in Paldang reservoir and vicinity (paldang Reservoir) using Landsat TM and ETM+ imagery. In the LSMA process, reference endmembers were driven from scatter-plots of Landsat bands 3, 4 and 5, and a series of endmember models were developed based on green vegetation (GV), soil and water endmembers which are the main indicators of wetlands. To consider phenological characteristics of Paldang Reservoir, a soil endmember was subdivided into bright and dark soil endmembers in spring and a green vegetation (GV) endmember was subdivided into GV tree and GV herbaceous endmembers in fall. We found that LSMA fractions improved the classification accuracy of the wetland land-cover. Four endmember models provided better GV and soil discrimination and the root mean squared (RMS) errors were 0.011 and 0.0039, in spring and fall respectively. Phenologically, a fall image is more appropriate to classify wetland land-cover than spring's. The classification result using 4 endmember fractions of a fall image reached 85.2 and 74.2 percent of the producer's and user's accuracy respectively. This study shows that this routine will be an useful tool for identifying and monitoring the status of wetlands in Paldang Reservoir.

Application of Hybrid Constructed Wetland System for Stream Water Quality Improvement (오염하천 수질개선을 위한 Hybrid형 인공습지의 적용)

  • Kim, Seung-jun;Choi, Yong-su;Bae, Woo-keun
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.209-214
    • /
    • 2006
  • The purpose of this study is to improve the stream water quality by the experimental hybrid constructed wetland system. It consisted of the water layer, sand bed planted reeds, irises and roses, gravel bed, yellow-soil media bed and a flow shifter (FS) which can reverse top and bottom flow in the middle of the wetland. The organic compounds and nitrogen removal efficiencies varied with the seasons, namely temperature change. In summer, the mean efficiencies of COD and TN in the outflow from this wetland system were 63.4 and 48.0% and shown the highest, respectively, whereas, the suspended solids and phosphorus removal efficiencies seemed to be less affected by temperature. As a result of inspecting the decreasing trend of pollutants, nitrification-denitrification in the wetland was the major removal mechanism for nitrogen, the nitrogen reduction was especially enhanced by the application of a FS in the wetland, and phosphorus reduction was mainly occurred as a consequence of adsorption of the yellow-soil media.

A Study on the Physical and Chemical Characteristics of the Constructed Wetland Soil for Sewage Treatment (오수처리용 인공습지내 토양의 이화학적 특성조사)

  • Yoon, Chun-Gyeong;Kwun, Tae-Young;Woo, Sun-Ho
    • Journal of Korean Society of Rural Planning
    • /
    • v.5 no.2 s.10
    • /
    • pp.24-29
    • /
    • 1999
  • The soil from constructed wetland system for sewage treatment was analyzed to examine physical and chemical characteristics. Clogging and lowered permeability were the physical matters of concern, and nutrient and salt accumulation were the chemical matters of concern. However, the soil properties of the constructed wetland system after 3 year operation demonstrated no degradation and still the soil works almost same as the initial stage. Encouragingly, no sludge accumulation was observed inside the system. Therefore, it implies that the wetland sewage treatment system can work continuously as long as it is operated and managed properly not to cause excessive pollutant loading.

  • PDF

Temporal and Spatial Change in Microbial Diversity in New-developed Wetland Soil Covered by Tamarix chinesis Community in Chinese Yellow River Delta

  • Chen Weifeng;Ann Seoung-Won;Kim Hong-Nam;Shi Yanxi;Mi Qinghua
    • Journal of Environmental Science International
    • /
    • v.14 no.4
    • /
    • pp.367-371
    • /
    • 2005
  • Soil samples were collected from new-developed wetland soil ecosystem of Tamarix chinesis plantation in Chinese Yellow River Delta in different months of 2003. Soil characteristics, temporal change and spatial distribution of microbial community composition and their relationship with nitrogen turnover and circling were investigated in order to analyze and characterize the role of microbial diversity and functioning in the specific soil ecosystem. The result showed that the total population of microbial community in the studied soil was considerably low, compared with common natural ecosystem. The amount of microorganism followed as the order: bacteria> actinomycetes>fungi. Amount of actinomycetes were higher by far than that of fungi. Microbial population remarkably varied in different months. Microbial population of three species in top horizon was corrected to that in deep horizon. Obvious rhizosphere effect was observed and microbial population was significantly higher in rhizosphere than other soils due to vegetation growth, root exudation, and cumulative dead fine roots. Our results demonstrate that microbial diversity is low, while is dominated by specific community in the wetland ecosystem of Tamarix chinesi.

A Study on Characteristics of Surface Water and Soil in Wangdungjae Wetland Located at Chiri-Mountain (지리산 왕등재 습지의 지표수 수질 및 토양 환경조사)

  • Kim, Jong-Oh;Lee, Chang-Ho;Ji, In-ju
    • Journal of Wetlands Research
    • /
    • v.3 no.1
    • /
    • pp.61-73
    • /
    • 2001
  • This study was performed to survey the characteristics of surface water and soil in Wangdungjae wetland located at Chiri-Mountain. The results of survey summarized as follows; 1. The physico-chemical characteristics of surface water such as pH, temperature, and DO were in the range of 6.02-6.39, $13.5-24.3^{\circ}C$ and 3.81-9.97 mg/L, respectively. Also, the organic concentrations such as BOD and COD were in the range of 1.3-1.61 mg/L and 3.55-9.97 mg/L, respectively. The water quality of five different sampling sites showed the similar characteristics. 2. The physico- chemical characteristics of soil showed the different properties with the soil sampling depth. According to increasing sampling depth, cation exchange capacity (CEC) and electric conductivity (EC) increased but pH decreased. 3. The future survey and researches on surface water and soil environments are needed to preserve the Wangdungjae wetland at Chiri-mountain marsh.

  • PDF

A Study On the Classification and Characteristics of Wetlands - Cases on the Watershed of Tumen River downstream in China - (중국 두만강 하류 유역의 습지 분류 특성에 관한 연구)

  • Zhu, Wei-Hong;Kim, Kwi-Gon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.1
    • /
    • pp.35-50
    • /
    • 2002
  • This study aims to understand wetland distribution and type-specific classification features with a focus on Tumen River downstream in China by adjusting and improving the classification system used in Korea with a reference to international wetland classification systems and their criteria & methods. In this study, wetland types were determined based on hydrology, vegetation, and soil conditions, which are the most basic elements of wetlands. Also, topography analytical map, vegetation analytical map, and soil analytical map for wetland classification were developed and used based on currently available topography map, vegetation map, and soil map. In addition, codes were defined based on topography, location, hydrology, and vegetation. The result shows that, in the Tumen River downstream, wetlands are often found near natural revetment and terrace land & river-bed lakes. In the discovered wetlands, riverine, lacustrine, and inland wetlands were mostly found at system level. Riparian and human-made wetlands were also identified. At a sub-system level, perennial and seasonal wetlands were found to a similar degree. At a class level, perennial open water, herbal plants, and shrubs were mostly found and sandy plain, hydrophytes, and forest tree types were also observed. An overall detailed classification shows that a total of 17 wetland types were found and a large distribution of sand dunes and river-bed lakes, which are scarce in Northeast Asia, indicates that other rare wetland types such as palustrine seasonal sand plain wetland and lacustrine seasonal sand plain wetland may be discovered.

Observations of Variations in Soil Organic Carbon and Carbon Dioxide in the Constructed Wetland at Goheung Bay (고흥만 인공습지의 토양유기탄소와 이산화탄소 변동 관측)

  • Kang, Dong-Hwan;Kim, Sung-Soo;Kwon, Byung-Hyuk;Kim, Il-Kyu
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.20 no.1
    • /
    • pp.58-67
    • /
    • 2008
  • Seasonal variations in carbon dioxide in the air and soil organic carbon in the sediments were monitored at the constructed wetland formed by reclamation work at Goheung Bay. Sediment sampling in the constructed wetland and carbon dioxide measurement in the air were conducted on June 16 and August 23, 2007. Sediments in the constructed wetland were sampled at 11 different points (June 16) and 14 points (August 23), while carbon dioxide in the air was measured at 13 points (June 16) and 15 points (August 23). Water content and organic carbon in the sampled sediments were analyzed in the laboratory. Water content of the sediments was higher than that of general soil, and the variation between June and August was not evident. The amounts of organic carbons in the sediments sampled on August 23 were higher than those sampled on June 16. Also, there was more organic carbon in the sediments sampled at the field of reeds than in the pure wetland area. Daily maximum variation in carbon dioxide in the air was higher on June 16, but the amount of carbon dioxide in the air was greater on August 23. The results of the study suggest that organic carbon in the sediments and carbon dioxide in the air were greater in summer (August 23) than in spring season (June 16) in the constructed wetland at Goheung Bay.