• Title/Summary/Keyword: Soil nitrogen

Search Result 2,409, Processing Time 0.022 seconds

Incorporation Effect of Green Manure Crops on Improvement of Soil Environment on Saemangeum Reclaimed Land during Silage Corn Cultivation

  • Yang, Chang-Hyu;Lee, Jang-Hee;Baek, Nan-Hyun;Shin, Pyeong;Cho, Kwang-Min;Lee, Sang-Bok;Lee, Gyeong-Bo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.3
    • /
    • pp.187-192
    • /
    • 2013
  • This study was carried out to investigate the incorporation effect of green manure crops (GMC) such as the hairy vetch on improvement of soil environment in reclaimed land during silage corn cultivation over the past two years. Plots consisted of conventional fertilization (CF) and incorporation of GMC were divided by addition rate of nitrogen fertilizer (100 kg $ha^{-1}$) with 30 - 100% of non nitrogen fertilization (NNF). Soil physico-chemical properties and growth and yield potential of silage corn were examined. The tested soils showed strong alkali and saline properties with low contents of organic matter and available phosphate while contents of exchangeable sodium and magnesium were high. Soil salinity increased during cultivation of summer crop. However, corn was not affected by salt content. The fresh weight of GMC at incorporation time was 18,345 kg $ha^{-1}$. Content of total nitrogen was 3.09% and the C/N ratio was 12.8 at incorporation time. Fresh and dry matter yield of silage corn were higher in the order of N30% reduction, CF, N50% reduction, N70% reduction, N100% reduction and NNF. Fresh and dry matter yield potential of silage corn for N30% reduction were comparable to those of CF. Bulk density of the soil decreased with incorporation of GMC, while porosity was increased. The soil pH decreased while content of exchangeable calcium, available phosphate, and organic matter increased. Also contents of exchangeable sodium and potassium decreased with incorporation of GMC. The data indicate that incorporation of hairy vetch can improve soil physical and chemical properties and reduce nitrogen fertilizer application especially for alkali saline reclaimed soil such as Saemangeum reclaimed land.

A Mathematical Model Development for the Nitrification-Denitrification Coupled Process

  • ;;T. Prabhakar Clement
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.430-433
    • /
    • 2003
  • Nitrogen pollution in urban and rural groundwater is a common problem and poses a major threat to drinking water supplies based on groundwater. In this work, the kinetics of nitrification-denitrification coupled reactions are modeled and new reaction modules for the RT3D code describing the fate and transport of nitrogen species, dissolved oxygen, dissolved organic carbon, and biomass are developed and tested. The proposed nitrogen transformations and transport model showed very good match with the results of other public codes.

  • PDF

Plant Analysis Methods for Evaluating Mineral Nutrient

  • Lee, Ye-Jin;Sung, Jwa-Kyung;Lee, Seul-Bi;Lim, Jung-Eun;Song, Yo-Sung;Lee, Deog-Bae;Hong, Suk-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.2
    • /
    • pp.93-99
    • /
    • 2017
  • Analysis of mineral nutrients in plant is required for evaluating diagnosis of plant nutritional status. Pretreatment procedure for the analysis of plant can be varied depending on elements to be analyzed. Wet-digestion is suitable for total nitrogen, phosphate and cations, however, digestion solution including nitric acid is not suitable for nitrogen analysis. Incineration procedure is required to analyze chloride, silicate and total sulfur. After digestion, total nitrogen is analyzed by Kjeldahl method, and phosphate is detected at 470nm by colorimetric analysis with ammonium meta vanadate. Cations and micro elements are determined by titration or colorimetry, also, these elements can be measured by Atomic absorption spectrometer (AAS) or Inductively coupled plasma spectrometer (ICP).

Optimum Nitrogen Fertilization Based on Soil Testing for Rice Cultivation in Different Paddy Soils (논토양 유형별 토양검정에 기초한 질소 적정 시비량)

  • Choi, Yong-Jo;Lee, Seong-Tae;Kang, Jin-Ho;Lee, Young-Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.1
    • /
    • pp.71-76
    • /
    • 2006
  • Environment friendly agriculture is nowadays a major fiend to sustain balanced agricultural ecosystem, keeping its productivity. This study was conducted to determine the optimum levels of nitrogen (N) application for improving rice productivity and reducing N loss through N application based on soil diagnosis. four levels of N were applied with 0, 50, 100 and 150% of recommended levels by soil testing in 4 different paddy soils (i.e. normal, sandy, ill-drained and immature soils). Across N treatments, the greatest grain yield was observed in sandy soil and the lowest in ill-drained soil. The grain yield tended to decrease with increasing N application from 50% to 150% of recommended levels, except ill-drained soil. To ensure maximum yield the optimum levels of N application were estimated at 120 kg, 153 kg and 173 kg $ha^{-1}$ in normal, immature and sandy soil, respectively.

Quantitative Comparisons of Soil Carbon and Nutrient Storage in Larix leptolepis, Pinus densiflora and Pinus rigitaeda Plantations

  • Kim, Choonsig;Cho, Hyun-Seo
    • The Korean Journal of Ecology
    • /
    • v.27 no.2
    • /
    • pp.67-71
    • /
    • 2004
  • This study was carried out to evaluate soil carbon and nutrient storage of three adjacent coniferous plantations (Larix leptolepis, Pinus densiflora and Pinus rigitaeda) growing on a similar site with a same planting age (42-year old) in the Sambong Exhibition Forests, Hamyang-gun, Gyungsangnam-do. The soil carbon concentration among three plantations was not significantly different in 0∼10cm soil depth, but other two depths (10∼20cm and 20∼30cm) showed higher carbon concentration in P. densiflora plantation than the other two plantations. The exchangeable cation concentrations (Ca and Mg) in 0∼10cm depth were significantly lower in L. leptolepis plantation than in the other two plantations, while nitrogen and phosphorus concentrations were not significantly different among three plantations except for nitrogen at 10∼20cm depth in P. rigitaeda plantation. Soil carbon storage in 0∼20cm depth of three plantations was unaffected by the stand types. Soil nutrient storage was not significantly different at each depth except for nitrogen storage at 10∼20cm depth in P. rigitaeda plantation because of the variation of bulk density and coarse fragment. This result demonstrates that soil carbon and nutrient concentrations among the plantations on a similar soil condition can be altered significantly by tree species effects over 40 years after plantation establishment.

Determination of Soil Nitrogen Supplying Capacity Using Pepsin Digestibility (Pepsin 분해방법을 이용한 토양의 질소 공급력 결정)

  • Kim, Yoo-Hak;Kim, Sun-Kwan;Zhang, Yong-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.5
    • /
    • pp.253-258
    • /
    • 2005
  • It is necessary to determine a nitrogen supplying capacity (NSC) of soil for sustainable agriculture. NSC has been decided by directly detecting N mineralization potential (NMP) and inorganic nitrogen or by indirectly approximating from organic matter and chemical properties of soil. NMP is best method for NSC but it takes long period. A study was conducted to find a short-term incubation method using pepsin through 1) determining NMP of 3 upland and 3 paddy soils, 2) establishing analytical condition of pepsin digestion by comparing to NMP, 3) validating with relations to N requirements for maximum yield of rice. NMPs of 6 soils were ranges from $63mg\;N\;kg^{-1}$ to $156mg\;N\;kg^{-1}$. The pepsin digestion method of soil nitrogen was established by determining amino nitrogen from digesting 5 g of soil for 30 minutes by 0.02% pepsin. This method was so highly correlated with a maximum rate of nitrogen fertilizer that it could be used for determining NSC in paddy soil.

Changes in Growth and Quality of Melon (Cucumis melo L.) and in Soil Nitrogen Forms due to Organic Fertilizer Application

  • Park, Yang Ho;Seo, Beom Seok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1009-1016
    • /
    • 2012
  • The purpose of this study was to determine the effects of organic fertilizers on soil properties and growth and quality of melon. Organic fertilizer was applied in soil at the rate of 0, 0.5, 1, 2N according to Rural Development Administration guideline in Korea. The fertilizer had no effects on plant growth-rate parameters, including plant height, leaf number, and leaf size. There were minor effects on the fruit quality parameters such as fruit weight, fruit length, fruit width, placenta and seed weights, sugar content, and starch content. Ascorbic acid level was decreased as fertilizer level was increased. The level of nitrate in groundwater increased with increased levels of N.

Dependence of Yield Response of Rice to Nitrogen Level on Soil Testing

  • Kim, Yoo Hak;Kong, Myung Suk;Kang, Seong Soo;Chae, Mi Jin;Lee, Ye Jin;Lee, Deog Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.594-597
    • /
    • 2014
  • Crop yields depend on the limiting factor of crop growth; Liebig law of minimum. Identifying the kind and the necessary amount of the limiting factor is essential to increase crop yield. Although nitrogen is the most essential nutrient, N application does not always bring about yield increases when other elements are limiting in rice cultivation. Two experiments were compared to elucidate the effect of soil testing on rice yield response to N level. The one was an experiment about yield response of 3 rice cultivars to 7 levels of N application, which was conducted from 2003 to 2004 in 25 farmer's fields without ameliorating soil conditions by soil testing and the other was a demonstration experiment on N fertilizer recommendation equation by 0, 0.5, 1.0, and 1.5 times of N recommended level in 5 soil types from 30 fields after ameliorating soil conditions by soil testing. The N response patterns of the experiments conducted without soil testing showed a Mitscherlich pattern in some cultivars and soil types, but did not in the others. The N response patterns of the demonstration experiment showed a Mitscherlich pattern in all soil types. Because these results indicated that N was the minimum nutrient in the demonstration experiment by ameliorating soil conditions with soil testing, but not in the other experiment without soil testing, the supply of minimum nutrients by soil testing could increase the efficiency of N-fertilization.

Soil Mineral Nitrogen Upteke and Com Growth from Hairy Vetch with Conventional and No-Tillage Systems

  • Seo, Jong-Ho;Lee, Ho-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.5
    • /
    • pp.381-387
    • /
    • 2003
  • Winter hairy vetch (HV) can be used as green manure with conventional tillage system (CT), in which chemical N fertilizer required for cultivation of sub-sequent com could be fully saved, or as cover crop with no-tillage system (NT) in which soil could be protected from erosion, control of weed, and the reduction of N fertilizer application. This experiment was carried out to compare the enrichment of soil mineral nitrogen (SMN) at corn root zone, and the changes of com growth and N uptake according to HV amounts (winter fallow, above-ground HV removed, intact HV, and HV added from aboveground HV removed) under two tillage systems in the upland field of National Crop Experiment Station, Suwon, Korea in 1996. HV cultivation during winter decreased SMN a little at com planting. HV incorporation with CT increased SMN rapidly during early growth stage according to rapid decomposition of Hv. SMN by HV cover with NT was increased slowly and its increase was higher in the surface soil (soil layer 0-7.5cm) compared to deep soil layer 7.5-22cm. Com growth and N status at corn silking stage, com yield and N uptake at harvest were increased in proportion to aboveground HV amounts regardless of tillage system. Average hairy vetch nitrogen (HV-N) uptake efficiency by com was 10% higher with CT than with NT in which average HV-N uptake efficiency was 43 %. Corn yields were not different between two tillage systems, but corn N uptake was increased by 33 kgN/ha more with CT than with NT due to the increase of corn N concentration. The increase of SMN and com N uptake from HV cover with NT could not be disregarded though those with CT were higher than with NT

On the Decay Rate of Soil Organic Matter and Changes of Soil Microbial populaiton (토양유기물의 분해속도와 Microbial populaiton의 소장에 관한 연구)

  • 김춘민
    • Journal of Plant Biology
    • /
    • v.10 no.1_2
    • /
    • pp.21-30
    • /
    • 1967
  • The aim of present study is to elucidate the relationship between decay rate of soil organic matter, and the change of soil microbial population under the oak and pine forest soils in Kwang-nung plantation stand. The results obtained are as follows: 1) The correlation coefficient between decay rate and the soil bacteria is 0.84 and fungi 0.93. 2) The distribution of soil microbial population is higher in both F horizon of the oak forest soil, and F and H horizon of the pine forest soil. However, the number of soil microorganisms decreases with the depth in each forest soil. 3) The population of soil microbes is related to moisture content, total nitrogen, available phosphorus, and exchangeable calcium, except organic carbon in fungi. 4) The soil organic matter has been mainly decomposed by fungi, and the size of its population are governed by the factors such as moisture content, organic carbon, total nitrogen, available phosphorus, and exchangeable calcium.

  • PDF