• Title/Summary/Keyword: Soil nitrogen

Search Result 2,409, Processing Time 0.033 seconds

Effects of PAA (Polyaspartic Acid) Contained Complex Fertilizer on Rice Growth and CH4 emission from Rice Cultivation (PAA(Polyaspartic Acid) 함유 복합비료가 벼 생육 및 벼 재배 논에서의 메탄 발생에 미치는 영향 연구)

  • Ju, Okjung;Lee, Jeong-Hyung;Choi, Byoung-Rourl;Won, Tae-Jin;Cho, Kwang-Rae;Seo, Jae-Sun;Kim, Young-Sun;Park, In-Tae
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.6
    • /
    • pp.705-711
    • /
    • 2013
  • This study was carried out to investigate the effects of the complex fertilizers containing polyaspartic acid (PAA) on growth and $CH_4$ emission in rice field and optimum application rate of the fertilizer compared to the standard recommended application rate (control). The PAA-containing complex fertilizers (PCF) were applied at 55, 65 and 75% levels of standard recommended application rate (control). The application rate of PAA in the plot of every PCF treatment was 150g ai/10a. The PCF was applied as a basal dressing without topdressing at tillering stage. The growth parameters of rice and its nitrogen use efficiency treated with PCF at a 65 to 75% level were not different compared with those of control, and the rice yield was also not significantly different between PCF at a 65 to 75% level and control during 2 years(2010~2011) field experiment. And the $NH_4$-N content in soil was not affected by 65% to 75% level of PCF treatment. Considering overall research results such as rice yield and growth parameters PCF is not significantly different with the control and the optimum application rate of the PCF as a basal fertilization was determined to be 65~75% of the standard application rate based on the result in rice cultivation. Moreover, $CH_4$ emission rate was significantly reduced by PCF treatments, showing 216 kg and 229 kg $CH_4/ha$ at 65% and 75% PCF treatment level, respectively, compared to 266 kg $CH_4/ha$ of the control.

Development of "Miscanthus" the Promising Bioenergy Crop (유망 바이오에너지작물 "억새" 개발)

  • Moon, Youn-Ho;Koo, Bon-Cheol;Choi, Yoyng-Hwan;Ahn, Seung-Hyun;Bark, Surn-Teh;Cha, Young-Lok;An, Gi-Hong;Kim, Jung-Kon;Suh, Sae-Jung
    • Korean Journal of Weed Science
    • /
    • v.30 no.4
    • /
    • pp.330-339
    • /
    • 2010
  • In order to suggest correct direction of researches on Miscanthus spp. which are promising bioenergy crop, authors had reviewed and summarized various literature about botanical taxonomy, morphology and present condition of breeding, cultivation and utilization of miscanthus. Among the genus of Miscanthus which are known 17 species, the most important species are M. sinensis and M. sacchariflorus which origin are East Asia including Korea, and M. x giganteus which is inter-specific hybrid of tetraploid M. sacchariflorus and diploid M. sinensis. Miscanthus is superior to other energy crops in resistance to poor environments including cold, saline and damp soil, nitrogen utilization efficiency, budget of input energy and carbon which are required for producing biomass and output which are stored in biomass. The major species for production of energy and industrial products including construction material in Europe, USA and Canada is M. x giganteus which was introduced from Japan in 1930s. In present, many breeding programs are conducted to supplement demerits of present varieties and to develop "Miscanes" which is hybrid of miscanthus and sugar cane. In Korea, the researches on breeding and cultivation of miscanthus were initiated in 2007 by collecting germplasms, and developed "Goedae-Uksae 1" which is high biomass yield and "mass propagation method of miscanthus" which can improve propagation efficiency in 2009. In order to develop "Korean miscanthus industry" in future, the superior varieties available not only domestic but also foreign market should be developed by new breeding method including molecular markers. Researches on production process of cellulosic bio-ethanol including pre-treatment and saccharification of miscanthus biomass also should be strengthen.

Environmental Survey on the Cultivation Ground in the West Coast of Korea (서해연안의 양식장 환경조사 3. 부안 백합 양식장 환경)

  • LEE Jeong-Yeol;KIM Young-Gill
    • Journal of Aquaculture
    • /
    • v.4 no.2
    • /
    • pp.111-128
    • /
    • 1991
  • In puan area the environmental surveys were carried out at two farms of hard clam, Meretrix lusoria from April 1987 to November 1978 in order to know heather the farm environments could be rehabilitated for the cultivation of hard clam or not. The range of temperature of surface seawater was $10.7{\~}27.4^{\circ}C$, pH $7.6{\~}8.2$, salinity $22.3{\~}30.3$ ppt, COD $0.20{\~}4.71\;mg/{\ell}$, sulfide $0.04{\~}0.22\;{\mu}g-at./{\ell}$, suspended solid $34.8{\~}199.3\;mg/{\ell}$ chlorophyll a $3.71{\~}49.02\;mg/m^3$, TIN $2.01{\~}24.47\;{\mu}g-a5./{\ell}$, phosphate $0.60{\~}11.03\;{\mu}g-at./{\ell}$ and silicate $4.04{\~}476.36\;{\mu}g-at./{\ell}$. The range of temperature of substratum (bottom soil) was $14.2{\~}29.7^{\circ}C$, pH $8.3{\~}9.5$, water content of substratum was $0.28{\~}0.49\;mg/g$ dried mud, COD $2.80{\~}50.94\;mg/g$ dried mud, total organic matter $1.05{\~}1.97\%$ concentration of total Kjedhal nitrogen $31.9{\~}194.9\;{\mu}g./{\ell}$ dried mud, and sulfide $0.032{\~}0.133\;mg/g$ dried mud. Fine sand was dominant ranging over $92{\~}95\%$ and silt and clay was $2.8{\~}8.1\%$ of the composition of substratum. Some residual agricultural chemicals, ${\alpha},\;{\beta},\;{\gamma}$-BHC, heptachlor, heptachlor-epoxide, aldrin, DDE, DDT and dieldrin were detected in hard clams collected from Puan areas. Especialy, more chemical were detected during the period of rainfalls. From above results, it is considered that the hard clam frams were not yet recovered from deteriorated conditions for aquaculture.

  • PDF

An Initiative Study on Relationship between Algal Blooms and Asian Dust for Regulation of Algal Blooms (조류 성장 억제를 위한 녹조 및 적조 발생과 황사의 상관관계 초기적 연구)

  • Kim, Tai-Jin;Jeong, Jaechil;Seo, Rabeol;Kim, Hyung Moh;Kim, Dae Geun;Chun, Youngsin;Park, Soon-Ung;Yi, Sehyoon;Park, Jun Jo;Lee, Jin Ha;Lee, Jay J.;Lee, Eun Ju
    • KSBB Journal
    • /
    • v.29 no.4
    • /
    • pp.285-296
    • /
    • 2014
  • Although the problems of the algal blooms have been world-widely observed in freshwater, estuary, and marine throughout the year, it is not yet certain what are the basic causes of such blooms. Consequently, it is very difficult to predict when and where algal blooms occur. The constituents of the Asian dust are in a good agreement with the elements required for the algal growth, which suggests some possible relationship between the algal blooms and the Asian dust. There have been frequently algal blooms in drinking water from rivers or lakes. However, there is no any algal blooms in upwelling waters where the Asian dust cannot penetrate into the soil due to its relatively weak settling velocity (size of particles, $4.5{\pm}1.5{\mu}m$), which implies the possible close relationship of the Asian dust with algal blooms. The present initiative study is thus intended firstly in Korea to illustrate such a relationship by reviewing typical previous studies along with 12 years of weekly iron profiles (2001~2012) and two slant culture experiments with the dissolved Asian dust. The result showed bacterial suspected colonies in the slant culture experiment that are qualitatively in a good agreement with the recent Japanese studies. Since the diatoms require cheap energy (8%) compared to other phytoplankton (100%) to synthesize their cell walls by silicate, the present results can be used to predict algal blooms by diatoms if the concentrations of iron and silicate are available during spring and fall. It can be postulated that the algal blooms occur only if the environmental factors such as light, nutrients, calm water surface layer, temperature, and pH are simultaneously satisfied with the requirements of the micronutrients of mineral ions supplied by the Asian dust as enzymatic cofactors for the rapid bio-synthesis of the macromolecules during algal blooms. Simple eco-friendly methods to regulate the algal blooms are suggested for the initial stage of blooming with limited area: 1) to cover up the water surface with black curtain and inhibit photosynthesis during the day time, 2) to blow air (20.9%) or pure oxygen into the bottom of the water and inhibit rubisco for carbon uptake and nitrate reductase for nitrogen uptake activities in algal growth during the night, 3) to eliminate the resting spores or cysts by suction of bottom sediments as deep as 5 cm to prevent the next year germinations.

Effects of Mixed Application of Chemical Fertilizer with Liquid Swine Manure on Agronomic Characteristics, Yield and Feed Value of Sorghum × Sorghum Hybrid for Silage in Paddy Field Cultivation (논 토양에서 사일리지용 수수 × 수수 교잡종 재배시 화학비료와 발효 돈분 액비 혼용 시용이 생육특성 및 영양성분에 미치는 영향)

  • Hwan, Hwang Joo;Lee, Sang Moo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.35 no.4
    • /
    • pp.290-296
    • /
    • 2015
  • This study was conducted to investigate the influence of the mixed application of chemical fertilizer (CF) with liquid swine manure (LSM) on the agronomic characteristics, dry matter yield, minerals, and free sugar in cultivating Sorghum ${\times}$ Sorghum Hybrid (SSH) on paddy soil. The field experiment was designed in a randomized block design with three replications and consisted of CF 100% (C), CF 70% + LSM 30% (T1), CF 50% + LSM 50% (T2), CF 30% + LSM 70% (T3), and LSM 100% treatment (T4). The application of LSM was based only on the nitrogen (150 kg/ha). Plant length, leaf length, leaf width and stem diameter were significantly the lower in T4 (p<0.05). Stem hardness increased significantly (p<0.05) as the LSM application rate decreased. Fresh yield was the highest in T2, whereas the lowest in T3 (p<0.05). However, dry matter yields and TDN yield did not show significant difference among treatments. Crude protein was the highest in T1 (p<0.05). Crude fat content did not significant differences between the T1, T2, T3 and T4, but C showed a significantly different (p<0.05). NDF and crude fiber were the highest in T3 and C, respectively (p<0.05). However, ADF did not show significant difference among treatments. Total mineral contents were higher in the order of T1> T2> T4> T3> C (p<0.05). Free sugar contents were significantly higher at T1 and C as compared to other treatments. The analysis of all the above results suggests that the application of liquid swine manure is very effective, considering the yield performance and the content of mineral and free sugar. In addition, liquid swine manure may be possible to grow SSH without chemical fertilizer.

Effects of Topping Time and Split Fertilization on Growth and Root Yield of Scutellaria baicalensis G. (적심시기(摘芯時期)와 분시방법(分施方法)이 황금(黃芩)의 생육(生育) 및 근수량(根收量)에 미치는 영향(影響))

  • Kim, Myeong-Seok;Chung, Byeong-Jun;Park, Gyu-Chul;Park, Tae-Dong;Kim, Sang-Chul;Shim, Jae-Han
    • Korean Journal of Medicinal Crop Science
    • /
    • v.6 no.4
    • /
    • pp.271-276
    • /
    • 1998
  • This experiment was carried out to determine the effects of topping time and fertilizer split application on the growth and root yield of Scutellaria baicalensis G. In case of stem cutting at 25cm above the soil surface early in July and middle in August, plant height was reduced by 37cm compared with nontreatment, but stem diameter, the number of branch per plant and the growth of root increased. Topping treatment twice produced the highest dry root yield (182kg/10a) of all, 15% higher than nontreatment. When nitrogen and potassium were applied by the basal dressing with 60% and by the top dressing early in July and middle in August with 20% in each time, the growth of plant (both top and root) increased. The dry root yield per 10a in top dressing twice was 12% higher than once.

  • PDF

A review of factors that regulate extracellular enzyme activity in wetland soils (습지 토양 내 체외효소 활성도를 조절하는 인자에 대한 고찰)

  • Kim, Haryun
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.97-107
    • /
    • 2015
  • Wetlands constitute a transitional zone between terrestrial and aquatic ecosystems and have unique characteristics such as frequent inundation, inflow of nutrients from terrestrial ecosystems, presence of plants adapted to grow in water, and soil that is occasionally oxygen deficient due to saturation. These characteristics and the presence of vegetation determine physical and chemical properties that affect decomposition rates of organic matter (OM). Decomposition of OM is associated with activities of various extracellular enzymes (EE) produced by bacteria and fungi. Extracellular enzymes convert macromolecules to simple compounds such as labile organic carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) that can be easily taken up by microbes and plants. Therefore, the enzymatic approach is helpful to understand the decomposition rates of OM and nutrient cycling in wetland soils. This paper reviews the physical and biogeochemical factors that regulate extracellular enzyme activities (EEa) in wetland soils, including those of ${\beta}$-glucosidase, ${\beta}$-N-acetylglucosaminidase, phosphatase, arylsulfatase, and phenol oxidase that decompose organic matter and release C, N, P, and S nutrients for microbial and plant growths. Effects of pH, water table, and particle size of OM on EEa were not significantly different among sites, whereas the influence of temperature on EEa varied depending on microbial acclimation to extreme temperatures. Addition of C, N, or P affected EEa differently depending on the nutrient state, C:N ratio, limiting factors, and types of enzymes of wetland soils. Substrate quality influenced EEa more significantly than did other factors. Also, drainage of wetland and increased temperature due to global climate change can stimulate phenol oxidase activity, and anthropogenic N deposition can enhance the hydrolytic EEa; these effects increase OM decomposition rates and emissions of $CO_2$ and $CH_4$ from wetland systems. The researches on the relationship between microbial structures and EE functions, and environmental factors controlling EEa can be helpful to manipulate wetland ecosystems for treating pollutants and to monitor wetland ecosystem services.

Effect of Application of Pig Manure Slurry to Rye on Rice Productivity in Paddy-land (답작지대에서 돈분액비에 의한 호밀 생산시 후작 벼의 생산성에 미치는 영향)

  • Yoon Chang;Yook Wan-Bang;Choi Ki-Choon;Lee Kyung-bo;Chung Ku-Nam
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.25 no.4
    • /
    • pp.251-258
    • /
    • 2005
  • This study was conducted to examine the effect of application of pig manure slurry(PMS) for rye cultivation in Paddy-land on rice productivity The field experiments were carried out from 1999 to 2002 on well-grown rice in Paddy-land at Kimje, Chunbuk province in Korea. PMS was manufactured by the fermentation for 6 months in natural condition. Amount of PMS was adjusted equal to total nitrogen value relative to its value of commercial chemical fertilizers. The amount of PMS were spread evenly over the soil surface two times; first in the autumn (before sowing, end of November) and second in the spring(regrowth of rye, middle of March). The field plots were consisted of four kinds (PMS $100\%$ treatment, PMS $200\%$ treatment PMS $100\%$ treatment with half of CF (CF $50\%$), Full of CF treatment (CF $100\%$). The experiment was designed as a randomized complete block. Each treatment was replicated three times. Rices are customarily gown under tropical korean condition as annuals. The results obtained from this study were summarized as fellows. Panicle length of rice was shorter in PMS $100\%$ than other treatments. Ripening grain ratio was the lower in CF treatment. In treatment of PMS $100\%$ and PMS $200\%$, 1000 grain weight was a downward trend as compared to that of full of CF treatments, whereas number of grains per $m^2$ was increased as compared to other treatments. Number of panicles reveals that there is an increase in order; CF $50\% + PMS\;100\%>\;PMS\;100\%\;>\;CF\;100\%\;>\;PMS\;200\%$. Yield of milled rice showed hi인 in CF $100\%$ and $CF 50\%+ PMS 100\%$, but were was no significant difference among treatments. There were did not a regular tendency in the ratio of leaf sheath bright, however the ratio of lodging area was higher in $CF50\%+PMS\;100\%$ treatment than other treatments. Based on the results of this experiment, $CF 50\%+PMS\;100\%$ may be the most effective in rice productivity under application of PMS for rye cultivation in Paddy-land.

Effects of Ammonium Sulfate and Potassium Sulfate Fertilizer on Dry Matter Yield and Forge Quality of Sorghum X Sudangrsss Hybrid in Reclaimed Tidal Land (간척지에서 수수 X 수단그라스에 대한 유안 및 황산칼리비료 시용효과)

  • Shin Jae Soon;Lee Seung Heon;Kim Won Ho;Kim Jong Geun;Yoon Sei Hyung;Lim Keun Bal
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.25 no.4
    • /
    • pp.245-250
    • /
    • 2005
  • This experiment was conducted to compare the frech and dry matter yields and feed values of Sorghum$\times$Sudangrsss Hybrid in accordance with different nitrogen and potassium fertilizer sources at the Dae-Ho reclaimed tidal land, Korea from 2003 to 2004. Soil salt contents of ammonium sulfate plots(T3, T4, T5) were higher than that of the urea plot(T2), but that of potassium sulfate plot(T6) was the lowest. The fresh yields of ammonium sulfate plots(T3, T4, T5) and potassium sulfate plot(T6) were higher than that of the urea plot(T2) as $173\%,\;173\%,\;144\%\;and\;90\%$. respectively. The dry matter and total digestible nutrient(TBN) yields were similar tendency like the results of the fresh matter yields. The crude protein(CP), neutral detergent fiber(NDF) and acid detergent fiber(ADF) contents of ammonium sulfate plots(T3, T4, T5) were higher than those of urea plot(T2), but those of potassium sulfate plot(T6) were the lowest. On the other hand, TDN content in potassium sulfate plot(T6) was the highest. It was desirable to use ammonium sulfate$(20\~30kg\;N/10a)$ and potassium sulfate fertilizer$(15kg\;K_2O/10a)$ than those of urea and potassium chloride fertilizer on reclaimed tidal land in view of forage production and its feed value.

Trend and Further Research of Rice Quality Evaluation (쌀의 품질평가 현황과 금후 연구방향)

  • Son, Jong-Rok;Kim, Jae-Hyun;Lee, Jung-Il;Youn, Young-Hwan;Kim, Jae-Kyu;Hwang, Hung-Goo;Moon, Hun-Pal
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.33-54
    • /
    • 2002
  • Rice quality is much dependent on the pre-and post harvest management. There are many parameters which influence rice or cooked rice qualitys such as cultivars, climate, soil, harvest time, drying, milling, storage, safety, nutritive value, taste, marketing, eating, cooking conditions, and each nations' food culture. Thus, vice evaluation might not be carried out by only some parameters. Physicochemical evaluation of rice deals with amy-lose content, gelatinizing property, and its relation with taste. The amylose content of good vice in Korea is defined at 17 to 20%. Other parameters considered are as follows; ratio of protein body-1 per total protein amount in relation to taste, and oleic/linoleic acid ratio in relation to storage safety. The rice higher Mg/K ratio is considered as high quality. The optimum value is over 1.5 to 1.6. It was reported that the contents of oligosaccharide, glutamic acid or its derivatives and its proportionalities have high corelation with the taste of rice. Major aromatic compounds in rice have been known as hexanal, acetone, pentanal, butanal, octanal, and heptanal. Recently, it was found that muco-polysaccharides are solubilized during cooking. Cooked rice surface is coated by the muco-polysaccharide. The muco-polysaccharide aye contributing to the consistency and collecting free amino acids and vitamins. Thus, these parameters might be regarded as important items for quality and taste evaluation of rice. Ingredients of rice related with the taste are not confined to the total rice grain. In the internal kernel, starch is main component but nitrogen and mineral compounds are localized at the external kernel. The ingredients related with taste are contained in 91 to 86% part of the outside kernel. For safety that is considered an important evaluation item of rice quality, each residual tolerance limit for agricultural chemicals must be adopted in our country. During drying, rice quality can decline by the reasons of high drying temperature, overdrying, and rapid drying. These result in cracked grain or decolored kernel. Intrinsic enzymes react partially during the rice storage. Because of these enzymes, starch, lipid, or protein can be slowly degraded, resulting in the decline of appearance quality, occurrence of aging aroma, and increased hardness of cooked rice. Milling conditions concerned with quality are paddy quality, milling method, and milling machines. To produce high quality rice, head rice must contain over three fourths of the normal rice kernels, and broken, damaged, colored, and immature kernels must be eliminated. In addition to milling equipment, color sorter and length grader must be installed for the production of such rice. Head rice was examined using the 45 brand rices circulating in Korea, Japan, America, Australia, and China. It was found that the head rice rate of brand rice in our country was approximately 57.4% and 80-86% in foreign countries. In order to develop a rice quality evaluation system, evaluation of technics must be further developed : more detailed measure of qualities, search for taste-related components, creation and grade classification of quality evaluation factors at each management stage of treatment after harvest, evaluation of rice as food material as well as for rice cooking, and method development for simple evaluation and establishment of equation for palatability. On policy concerns, the following must be conducted : development of price discrimination in conformity to rice cultivar and grade under the basis of quality evaluation method, fixation of head rice branding, and introduction of low temperature circulation.