• 제목/요약/키워드: Soil nitrate nitrogen

검색결과 317건 처리시간 0.032초

Enhanced ion-exchange properties of clinoptilolite to reduce the leaching of nitrate in soil

  • Kabuba, John
    • 분석과학
    • /
    • 제35권2호
    • /
    • pp.41-52
    • /
    • 2022
  • The leaching of nitrate from soil increases the concentration of elements, such as nitrogen, phosphorus, and potassium, in water, causing eutrophication. In this study, the feasibility of using clinoptilolite as an ion-exchange material to reduce nitrate leaching in soil was investigated. Soil samples were collected from three soil depths (0 - 30, 30 - 90, and 90 - 120 cm), and their sorption capacity was determined using batch experiments. The effects of contact time, initial concentration, adsorbent dosage, pH, and temperature on the removal of NO3- were investigated. The results showed that an initial concentration of 25 mg L-1, a contact time of 120 min, an adsorbent dosage of 5.0 g/100 mL, a pH of 3, and a temperature of 30 ℃ are favorable conditions. The kinetic results corresponded well with a pseudo-second-order rate equation. Intra-particle diffusion also played a significant role in the initial stage of the adsorption process. Thermodynamic studies revealed that the adsorption process is spontaneous, random, and endothermic. The results suggest that a modification of clinoptilolite effectively reduces the leaching of nitrate in soil.

Changes in Growth and Quality of Melon (Cucumis melo L.) and in Soil Nitrogen Forms due to Organic Fertilizer Application

  • Park, Yang Ho;Seo, Beom Seok
    • 한국토양비료학회지
    • /
    • 제45권6호
    • /
    • pp.1009-1016
    • /
    • 2012
  • The purpose of this study was to determine the effects of organic fertilizers on soil properties and growth and quality of melon. Organic fertilizer was applied in soil at the rate of 0, 0.5, 1, 2N according to Rural Development Administration guideline in Korea. The fertilizer had no effects on plant growth-rate parameters, including plant height, leaf number, and leaf size. There were minor effects on the fruit quality parameters such as fruit weight, fruit length, fruit width, placenta and seed weights, sugar content, and starch content. Ascorbic acid level was decreased as fertilizer level was increased. The level of nitrate in groundwater increased with increased levels of N.

제주도 지하수 관정 내 질산성질소 오염도 평가 (Evaluation of Nitrate Nitrogen Contamination Degree in Groundwater Wells, Jeju Island)

  • 송성호;황보동준;장기영;김진성;서상기;양원석
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제26권4호
    • /
    • pp.8-19
    • /
    • 2021
  • In this study, the evaluation standard for nitrate nitrogen contamination degree (WELCUP) was established using six factors that influence the groundwater quality in Jeju Island. To do this, weightings, ranges, and ratings were assigned for each factor and the relative possibility of nitrate nitrogen contamination degree was evaluated using WELCUP index for each well. As a result of calculating the WELCUP index using groundwater quality data of 5,112 wells in Jeju Island for 27 years (1993-2019), all 61 wells with the WELCUP index value higher than 100 are distributed in Daejung and Hangyung watershed with relatively large area of farmland in Jeju Island. In particular, as the ratio of private wells is more than 64%, it is necessary that systematic management is needed for private wells in terms of nitrate nitrogen contamination. Consequently, based on the results of applying the WELCUP evaluation standard, it is necessary to select the prioritization of nitrate nitrogen contamination pathways project for groundwater wells in Jeju Island.

통계적 분석 방법을 이용한 국가지하수수질측정망의 오염 등급 정량화 및 평가 (Quantification and Evaluation of Groundwater Quality Grade by Using Statistical Approaches)

  • 윤희성;배광옥;이강근
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제17권1호
    • /
    • pp.22-32
    • /
    • 2012
  • This study suggests a method to grade groundwater quality quantitatively using statistical approaches for evaluating the quality of groundwater in wells included in the Groundwater Quality Monitoring Network (GQMN). The proposed analysis method is applied to GQMN data from 2001 to 2008 for nitrate nitrogen, chloride, trichloroethylene, potential of hydrogen (pH), and electrical conductivity. The analysis results are obtained as groundwater quality grades of the groundwater representing each of the monitoring stations. The degree of groundwater contamination is analysed for water quality parameters, district, and usage. The results show that the degree of groundwater contamination is relatively high by nitrate nitrogen, bacteria and electrical conductivity and at Seoul, Incheon, Gwangju, Gyeonggido and Jeollado. The degree of contamination by nitrate nitrogen and trichloroethylene is especially high when the groundwater is used for agricultural and industrial water, respectively. It is evaluated that potable groudnwater in GQMN is significantly vulnerable to nitrate nitrogen and bacteria contamination.

시설재배지에 질소관비 농도가 오이생육과 질산태 질소에 미치는 영향 (Effects of nitrogen fertigation on cucumber growth and nitrate in Soil under plastic film house)

  • 강성수;김명숙;공명석;김유학;오택근;이창훈
    • 농업과학연구
    • /
    • 제41권4호
    • /
    • pp.385-390
    • /
    • 2014
  • To evaluate the impact of nitrogen fertigation on crop growth and $NO_3$-N concentration in the soil solution, field experiment for cucumber cultivation during spring and fall season were carried out in on-farm located in Byeongcheon-myeon, Chunan-si, Chungcheonnam-do. Supplying nitrogen of 120-150 mg/L by fertigation device into soil per week reached to maximum yields of cucumber fruits. However, cucumber growth did not show any significant difference between nitrogen levels. Nitrogen supply of 400 mg/L, highest N levels, did not affect cucumber growth. Difference between green values of cucumber leaves using RGB scores were closely related with cucumber yields, and therefore, this results suggests that green values of cucumber leaves could be used as a way of determining the application rates of nitrogen for cucumber cultivation period under fertigation system.

Nitrate Uptakes by Microorganisms Isolated from the Soils of Greenhouse

  • Cho, Kwang-Hyun;Lee, Gyeong-Ja;Ahn, Hae-Jin;Kim, Young-Kee
    • Journal of Applied Biological Chemistry
    • /
    • 제48권1호
    • /
    • pp.11-15
    • /
    • 2005
  • Salinity of soils in greenhouse has been increased by massive application of fertilizers. Nitrogen fertilizer was most popular, and thus nitrate became the majority of soil salinity. Accumulation of nitrate led to deleterious effects on the growth and development of crops and vegetables. Microbial strains able to utilize nitrate and thus remove excess nitrate from farm land soils were isolated from 15 different soils of greenhouses and plastic film houses. Four strains able to grow in medium containing 50 mM $KNO_3$ were isolated, among which only E0461 showed high capacity of nitrate uptake. Nitrate uptake by E0461 was dependent on culture medium and was increased by addition of tryptone and peptone. Although E0461 was able to grow without tryptone and peptone, growth was slow, and no nitrate uptake was observed. Nitrate appeared to facilitate E0461 growth in the presence of tryptone and peptone. Through kinetic analysis, nitrate uptake was measured at various concentrations of nitrate, and half-life was calculated. Nitrate concentration decreased with increasing incubation period, and plot between half-lives and initial concentrations of nitrate fitted to single exponential function. These results suggest one major factor plays an important role in microbial nitrate uptake.

고질소 및 저 칼륨 양액처리시 시금치내의 비타민C및 질소 대사의 변화 (Changes in the Nitrate Assimilation and Ascorbic Acid Content of Spinach Plants Treatmented with Nutrient Solutions Containing High Nitrogen and Low Potassium)

  • 박양호;서범석
    • 한국토양비료학회지
    • /
    • 제42권4호
    • /
    • pp.301-306
    • /
    • 2009
  • 이 연구의 목적은 건강한 작물과 시들은 식물의 질소대사와 아스코리빈산 함량의 차이를 비교하는것에 있다. 시듬은 인공적으로 유도되었으며, 그방은 질소과다 시비 및 저칼륨 시비에 의한 것으로4개의 처리구를 두었다. 1N-1P-1K (control), 6N-1P-0K (0K), 6N-1P-0.5K (0.5K), and 6N-1P-2K (2K). 시듬 정도는 control, 0%; 2K, 10%; 0.5K, 40%; and 0K, 70%. 식물 생장에는 고질소 저 칼륨 처리구에서는 그리 큰 차이가 없었으며 질산태질소의 함량은 control 구와 비교하여 고 질소 처리구가 높았으며, 아스코리빈 산 함량은 고질소 처리구가 control구에 비하여 낮았음을 확인 할수 있었다.

토양용액 채취를 위한 토성별 한계수분함량 설정 (Determination of moisture threshold for solution sampling in different soil texture)

  • 이창훈;김명숙;공명석;김유학;오택근;강성수
    • 농업과학연구
    • /
    • 제41권4호
    • /
    • pp.399-404
    • /
    • 2014
  • Soil moisture is an important factor for the availability and circulation of nutrients in arable soil. The purpose of this study was to set thresholds moisture content on soil nitrate concentration in the solution for real-time diagnosis. Sandy loam, silt loam, and sandy loam was filled with $1.2g\;cm^{-3}$ at Wagner pots, 0, 100, and $200mg\;L^{-1}$ of $KNO_3$ was saturated. Nitrate in standard solution was recovered about 95% by passing the porous cup. Nitrate concentrations in sampling of soil solution were examined by using a porous cup. The soil solution was higher in accordance with sandy loam> silt loam> clay loam, limited water filled pore space for sampling soil solution was 33.7, 56.4, and 62.2%, respectively. Nitrate concentration in the soil solution was negligible at sandy loam and silt loam during sampling periods, which was decreased about 50~82% in clay loam compared to the initial $NO_3$-N concentration in the saturated $KNO_3$ solution. Over limitation of soil solution sampling, soil EC and $NO_3$-N content were increased with the saturated $NO_3$-N concentration, regardless of soil texture (p<0.05). Conclusively, soil solution by using a porous cup was possible, regardless of the soil texture, which was useful for the diagnosis in nitrate concentration of soil solution. However, because nitrate concentration of soil solution in a clay loam changes, it was necessary for careful attention in order to take advantage for the real-time diagnosis of nitrogen management in soil.

제주도 한림지역의 지하수와 토양의 오염특성 (Characteristics of Groundwater and Soil Contamination in Hallim Area of Jeju Island)

  • 현근탁;송상택;좌달희;고영환
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제15권3호
    • /
    • pp.44-51
    • /
    • 2010
  • Contamination of groundwater from point and non-point sources is one of major problems of water resource manangement in Jeju island. This study characterized groundwater and soil contamination in Hallim area which is one of the areas of significantly contaminated soil and groundwater in Jeju Island. The amount of loaded contaminant (ALC) of Jeju area was estimated as 13,212 ton N/yr and 3,210 ton P/yr, The ALC of Hallim area was amounted to 2,895 ton N/yr and 1,102 ton P/yr, which accounted for 21.9% and 34.3% of the Jeju's ALC, respectively. The soil pH values (5.6-5.9) were not much different in land use areas. By contrat, average cation exchange capacity (CEC) of 14.1 $cmol^+/kg$ was high comparing to the nationwide range of 7.7-10.9 $cmol^+/kg$. Further, Sodium adsorption ratios (SARs) of horse ranch, pasture, and cultivating land for livestock were as high as 0.19, 0.17, and 0.16 respectively, comparing to the other landuse areas. Nitrate nitrogen at 22.2% of total groundwater wells exceeded 10 mg/L (the criteria of nitrate nitrogen for drinking water), averaginged 6.62 mg/L with maximum 28.95 mg/L. Groundwater types belonged to Mg-$HCO_3$, Na-$HCO_3$, Ca-$HCO_3$, and Na-Cl, among which Mg-$HCO_3$ type occupied more than 70% of the total samples, indicating the presence of anthropogenic sources. The concentration of nitrate nitrogen was negatively related to altitude and well depth, and positively related to the concentration of Ca, Mg, and $SO_4$ which might originate from chemical fertilizer. The ratio of nitrogen isotopes was estimated as an average of 8.10$^{\circ}/_{\circ\circ}$, and the maximum value of 17.9$^{\circ}/_{\circ\circ}$. According to the nitrogen isotope ratio, the most important nitrogen source was assessed as chemical fertilizer (52.6%) followed by sewage (26.3%) and livestock manures (21.1%).

질소 및 산소 안정동위원소 활용 수계 질산성 질소 오염원 판별을 위한 기술 절차 제안 (Technical Procedure for Identifying the Source of Nitrate in Water using Nitrogen and Oxygen Stable Isotope Ratios)

  • 김기범;정재식;이승학
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제27권2호
    • /
    • pp.87-98
    • /
    • 2022
  • This study aims to prepare a technical protocol for identifying the source of nitrate in water using nitrogen (δ15N) and oxygen (δ18O) stable isotope ratios. The technical processes for nitrate sources identification are composed of site investigation, sample collection and analysis, isotope analysis, source identification using isotope characteristics, and source apportionment for multiple potential sources with the Bayesian isotope mixing model. Characteristics of various nitrate potential sources are reviewed, and their typical ranges of δ15N and δ18O are comparatively analyzed and summarized. This study also summarizes the current knowledge on the dual-isotope approach and how to correlate the field-relevant information such as land use and hydrochemical data to the nitrate source identification.