• Title/Summary/Keyword: Soil nailing

Search Result 159, Processing Time 0.03 seconds

An Analytical Study on the Relationship between Factor of Safety and Horizontal Displacement of Soil Nailed Walls (쏘일네일 보강벽체의 수평변위와 안전율과의 관계 분석연구)

  • Kim, Hongtaek;Lee, In
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.2
    • /
    • pp.45-53
    • /
    • 2011
  • Soil nailing method was often designed by the slope stability analysis based on limit equilibrium. However, in the case of shorten length of nails, although the calculated factor of safety is within the design factor of safety, the horizontal displacement of soil nailed walls occurred above the allowable limit. In this study, relationship between the load and factor of safety, and relationship between the load and displacement ratio based on the test results were analysed. From the analysed results, the relationship between factor of safety and displacement ratio was estimated. For the mobilized horizontal displacement of the walls within the serviceability limit corresponding to the displacement of less than 0.3% displacement ratio, the calculated factor of safety by limit equilibrium analysis had to satisfy above 1.35. Also, although the minimum factor of safety is estimated above 1.35, the maximum horizontal displacement is often mobilized above 0.3% of excavation height. Therefore, it is necessary to perform the numerical analysis of soil nailed walls in the case of low shear strength or high excavation.

Study of the Soilnail-Slope Design Method Considering Bending Resistance of Soilnail (휨저항을 고려한 쏘일네일보강사면의 해석에 관한 연구)

  • Joo, Yong-Sun;Kim, Nak-Kyung;Kim, Sung-Kyu;Park, Jong-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6C
    • /
    • pp.331-338
    • /
    • 2008
  • Soil nailing is used as a method of slope stabilization and excavation support. The design method of soil nail are based on experience or assumption of interaction between soil and reinforcement. Most design methods simply considers the tension of reinforcement for analysis of slope stabilization. Soil nails interact with soils under combined loading of shear and tension. Jewell & Pedley suggested a design equation of shear force with bending stiffness and discussed that the magnitude of the maximum shear force is small in comparison with the maximum axal force. However, they have used a very conservative limiting bearing stress on nails. This paper discusses that the shear strength of soil nails should not be disregarded with proper bearing stresses on nails. The modified FHWA design method was proposed by considering shear forces on nails with bending stiffness.

A Case Study on Solpe and Earth Retaining Wall Reinforced by Pressure-Grouted Soil Nailing (압력식 쏘일네일링을 적용한 사면 및 흙막이 벽체 설계/시공 사례)

  • Jung, Kyung-Han;Kim, Jun-Youp;Lee, Seung-Jai
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.97-108
    • /
    • 2010
  • 발포우레탄 패커를 이용한 압력식 쏘일네일링 공법은 기존 쏘일네일링 공법의 단점을 보완하기 위하여 개발되었으며, 그라우팅 두부에 패커를 설치하여 네일 정착부를 완전히 밀폐하고 압력 그라우팅을 실시하여 정착부의 유효직경 및 인발저항력을 증가시켜 안전율을 향상시키는 공법이다. 압력식 쏘일네일링 공법에 대한 효용성을 검증하기 위하여 발포우레탄 패커 특성시험 및 현장조건을 묘사한 실내 그라우팅 주입실험, 현장시험 및 FEM해석을 수행하였다. 본 공법의 필수요소인 발포우레탄 패커의 정착력 확인을 위한 패커 특성시험 결과, 공내에 작용하는 압력에 대하여 패커가 충분히 저항함을 알 수 있었으며, 인발저항력 증가 원인 분석을 위한 실내 및 현장 시험결과, 압력 그라우트에 의하여 그라우트의 품질확보, 보강력증가 및 주변지반의 압밀효과를 확인 하였다. 끝으로 압력식 쏘일네일링 공법을 적용한 사면 및 흙막이 벽체 설계/시공 사례를 분석하여 현장 적용시 본 공법의 효용성 및 대처능력의 우수함을 입증하였다.

  • PDF

A Case study on the construction badness for slope reinforcement (사면보강공법 시공불량사례 검토를 통한 개선방안 연구)

  • Kwon, Sung-Ju;Kim, Yong-Soo;Chang, Bum-Soo;Nah, Kwang-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.739-744
    • /
    • 2005
  • The construction road work are increasing now. And the domestic slope construction are steadily increased and changed the complicated and large-scale. Therefore ground reinforcement for slope stabilization has been increasingly used during the past few decades with a wide variety of techniques including soil nailing, rock bolt, anchor and different types. But in some cases which applied slope reinforcement construction by badness or mistake. So this paper is the study of construction badness for slope reinforcement.

  • PDF

A Study on Rainfall-induced Erosion of Land Surface on Reinforced Slope Using Soil Improvement Material (지반 개량재에 의한 보강사면의 강우시 표면침식에 관한 연구)

  • Kim, You-Seong;Kim, Jae-Hong;Bhang, In-Hwang;Seo, Se-Gwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.49-59
    • /
    • 2013
  • Heavy rainfall intensity may cause shallow slope failures and debris flow by rill erosion and scour on land surface. The paper represents the difference between native soil (weathered soil) and reinforced soil, which is mixed by hardening agent with flyash as main material, for investigating experimental findings of rill erosion and erosion. Results obtained from artificial rainfall simulator show that erosion rate of reinforced soil mixed with hardening agent is reduced by 20% because an amount of eroded soil on slope surface is inversely proportional to the increase of soil strength. For example, rainfall of 45mm (at the elapsed time of 25mins in rainfall intensity of 110mm/hr) triggers rill erosion on native soil surface, but the rill erosion on reinforced soil surface does not even occur at 330mm rainfall (at the elapsed time of 3hrs in rainfall intensity of 110mm/hr). As a result of slope stability analysis, it was found that the construction method for reinforced soil surface would be more economical, easy and fast construction technology than conventional reinforcement method.

Stability Analysis of Large Slope Based on In-Situ Monitoring and Numerical Analysis (대절토사면의 현장계측 및 수치해석을 통한 사면 안정성 분석 사례)

  • Kim, Byung-Chul;Hwang, Ji-Hoon;Won, Ji-Hyun;Choi, Mun-Kyu;Kwon, Oh-Sung;Song, Chi-Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.629-638
    • /
    • 2005
  • 본 연구대상 사면은 연장이 300m이고 최대 사면높이가 80m에 달하는 대절토 사면으로 서 총 11 소단으로 이루어져 있으며, 전 사면에 걸쳐 Soil Nail 공법으로 보강이 되어있다. 사면 상단부에 설치된 2개의 경사계를 이용하여 주기적으로 사면의 수평방향 변위 계측을 실시하던 중, 사면 하부의 소단 굴착과정에서 상대적으로 급격한 사변경사 방향의 수평변위가 발생한 것을 확인하였다. 본 연구에서는 사면의 수평방향 변위 계측결과 분석 및 대상 사면에 대한 수치해석을 통하여 사면의 안정성 여부를 판단하고자 하였으며, 굴착단계별 수평방향 변위량 및 변위 양상을 분석함으로써 급격히 증가한 변위의 원인을 파악하였다. 수치해석을 통해 나타난 사면 굴착 단계에 따른 사면 토체의 소성영역을 도시한 결과, 사면 전체에 걸쳐 대규모 파괴면이 나타났으며 파괴활동면이 Soil Nail 로 보강된 영역의 바깥쪽에 위치하여 사면 안정성 확보를 위한 대책방안이 수립되어야 할 것으로 판단되었다. 또한 보다 자세한 원인 규명을 위한 확인 시추조사를 실시하여 하부 지층 특성을 파악하였으며, 하부에 풍화가 심하고 절리 및 균열이 심한 파쇄구간이 분포하고 있음이 확인되었다. 연구 대상 사면의 변위 계측 결과, 수치해석 결과, 확인 시추 조사 결과 및 예상되는 사면 활동의 규모 등을 고려할 때 사변의 안정성 확보를 위한 대책방안이 수립되어야 하며, 본 사면은 억지말뚝과 Ahchor 공법 적용이 가장 적절할 것으로 판단되었다.

  • PDF

The Behavior of Stabilizing Piles installed in a Large-Scale Cut Slope (대규모 절개사면에 설치된 억지말뚝의 거동)

  • Song, Young-Suk;Hong, Won-Pyo
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.191-203
    • /
    • 2009
  • The effect of stabilizing piles on cut slopes is checked and the behavior of slope soil and piles are observed throughout the year by field measurements on the large-scale cut slopes. First of all, the behavior of the slope soil was measured by inclinometers during slope modification. Landslides occurred in this area due to the soil cutting for slope modification. The horizontal deformations of slope soil are gradually increased and rapidly decreased at depth of sliding surface. As the result of measuring deformation, the depth of sliding surface below the ground surface can be known. Based on the measuring the depth of the sliding surface, some earth retention system including stabilizing piles were designed and constructed in this slope. To check the stability of the reinforced slope using stabilizing piles, an instrumentation system was installed. As the result of instrumentation, the maximum deflection of piles is measured at the pile head. It is noted that the piles deform like deflection on a cantilever beam. The maximum bending stress of piles is measured at the soil layer. The pile above the soil layer is subjected to lateral earth pressure due to driving force of the slope, while pile below soil layer is subjected to subgrade reaction against pile deflection. The deflection of piles is increased during cutting slope in front of piles for the construction of soil nailing. As a result of research, the effect and applicability of stabilizing piles in large-scale cut slopes could be confirmed sufficiently.

A Study on the Stabilizing Method against Landslide using Slide Suppressor Wall (산사태 억지벽체공법에 관한 연구)

  • Kim, Hong-Taek;Gang, In-Gyu;Yeom, Gyeong-Seop
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.06c
    • /
    • pp.94-110
    • /
    • 1994
  • This paper Voposes a stabilizing method against landslide using slide suppressor wall reinforced with soil nails. Included are a Evuedlwe to predict earth Uessures acing on nailed-slide suppressor wall and a method of analysis of the laterally loaded concrete pile. Based rut the Voposed Vocedure, the emcignt installation type and inclusion angle of nails are analyzed. Also, optimum location of the slide suppressor wall composed of concrete panel and stabilizing pile is examined using the UC Vogram. Finally, an example is given to illustrate the analysis and desisa procedure of the proposed slope reinforcing method.

  • PDF

Research & Development of High Performance & Multi-Functional New Grouting Materials for Ground Improvement & Reinforcement (고성능 다기능 특수 그라우트 신재료 개발 및 기초지반보강재로의 사례 연구)

  • Park, Bong-Geun;Cho, Kook-Hwan;Na, Kyung;Yoon, Tae-Gook;Lee, Yong-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.338-350
    • /
    • 2010
  • As existing materials for ground reinforcement, chemical grout material using cementitous materials and waterglass was used. But many problems in terms of ground reinforcement effects were implicated. In this study, for development and applicability verification of new materials, viscosity, fluidity, permeability, Self-Leveling, keeping of drilled hole, antiwashout underwater, resistance of water (groundwater dilution and minimize material eluting) and the early strength and long-term strength characteristics of developed materials was confirmed, and material standards, and establishing construction standards for the various model tests were conducted. As a result, high viscosity, flowability, permeability and keeping of drilled hole characteristics are excellent, in addition to the early strength properties, dilution does nat occur to groundwater, including groundwater is available for dealing with environmental issues. Application of basic and reinforcement method by Filler function in addition to structure can also or development of a new concept can be expected. In addition, middle and large-diameter drilled shaft, micropile, ground anchors, soil-nailing, steel pipes multi-grouting reinforcement for cement injection process could be used enough to even be considered.

  • PDF

Behavioral Characteristics of Prestressed Earth Method Reinforced with Earth Bolt (Earth Bolt로 보강된 압축토(PEM) 옹벽의 거동 특성)

  • Kim, Hong-Tak;Lee, Hyuk-Jin;Kim, Jong-Min;Ryu, June-Won;Sung, Nak-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.662-669
    • /
    • 2006
  • PEM(Prestressed Earth Method) is a method to minimize lateral movements of the ground generated by progressive excavation and increases shear strength by applying prestresses to the end of earth bolt equipped with a P.C. panel after earth bolt is set up under the in-situ ground. In case of PEM, there are noticeable advantages. First of all, PEM maximizes the utility of the ground because PEM needs less volume of backfill and cutting than other general walls. Second, it's an environmental method possible to garden on the banquette. In this study, the behavioral characteristics of PEM are analyzed and compared with soil nailing system through the measured data of PEM and numerical method using SMAP-2D program and also an increased stability of PEM is evaluated by increasing prestress of earth bolts through the numerical analysis using Slide (ver. 4.0) program.

  • PDF