• Title/Summary/Keyword: Soil moisture value

Search Result 256, Processing Time 0.027 seconds

Simulation for Irrigation Management of Corn in South Texas

  • Ko, Jong-Han;Piccinni, Giovanni
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.2
    • /
    • pp.161-170
    • /
    • 2008
  • Interest is growing in applying simulation models for the South Texas conditions, to better assess crop water use and production with different crop management practices. The Environmental Policy Integrated Climate (EPIC) model was used to evaluate its application as a decision support tool for irrigation management of com (Zea mays L.) in South Texas of the U.S. We measured actual crop evapotranspiration (ETc) using a weighing lysimeter, soil moisture using a neutron probe, and grain yield by field sampling. The model was then validated using the measured data. Simulated ETc using the Hargreaves-Samani equation was in agreement with the lysimeter measured ETc. Simulated soil moisture generally matched with the measured soil moisture. The EPIC model simulated the variability in grain yield with different irrigation regimes with $r^2$value of 0.69 and root mean square error of $0.5\;ton\;ha^{-1}$. Simulation results with farm data demonstrate that EPIC can be used as a decision support tool for com under irrigated conditions in South Texas. EPIC appears to be effective in making long term and pre-season decisions for irrigation management of crops, while reference ET and phenologically based crop coefficients can be used for inseason irrigation management.

The Estimation of Water Balance at Regional Upland According to RCP8.5 Scenario from 2011 to 2020

  • Shin, Kook-Sik;Cho, Hyun-Sook;Seong, Ki-Young;Park, Tae-Seon;Kang, Hang-Won;Seo, Myung-Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.1
    • /
    • pp.48-58
    • /
    • 2014
  • In order to evaluate water balance at upland according to RCP8.5 climate change scenario distributed by Korean Meteorological Administration (KMA), we simulated soil moisture using estimation model, called AFKAE0.5 for 66 sites from 2011 to 2020, and established the water balance maps. The amount of annual average precipitation by RCP8.5 scenario was highest in 2016 as recorded 2,062 mm and lowest in 2011 with 1,134 mm. As result of analysis for monthly precipitation and runoff, the amounts of precipitation and runoff have been especially intensive in July in 2014, 2016, 2019, and 2020. Overall, the area of Kyeongbuk and Gyeonggi was estimated more dried status of soil compared with precipitation. Except 2015 and 2020, soil water balance was recorded as negative value in other years which was calculated by subtracting output from input. The status of soil moisture was the most dry in 2020 among those in other years.

A Study on Agricultural Drought Monitoring using Drone Thermal and Hyperspectral Sensor (드론 열화상 및 초분광 센서를 이용한 농업가뭄 모니터링 적용 연구)

  • HAM, Geon-Woo;LEE, Jeong-Min;BAE, Kyoung Ho;PARK, Hong-Gi
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.107-119
    • /
    • 2019
  • As the development of ICT and integration technology, many changes and innovations in agriculture field are implemented. The agricultural sector has shifted from a traditional industry to a new industrial form called the 6th industry combined with various advanced technologies such as ICT and IT. Various approaches have been attempted to analyze and predict crops based on spatial information. In particular, a variety of research has been carried out recently for crop cultivation and smart farms using drones. The goal of this study was to establish an agricultural drought monitoring system using drones to produce scientific and objective indicators of drought. A soil moisture sensor was installed in the drought area and checked the actual soil moisture. The soil moisture data was used by the reference value to compare and analyze the temperature and NDVI established by drones. The soil temperature by the drone thermal image sensor and the NDVI by the drone hyperspectral was analyzed the correlation between crop condition and soil moisture in study area. To verify this, the actual soil moisture was calculated using the soil moisture measurement sensor installed in the target area and compared with the drone performance. This study using drone drought monitoring system may enhance to promote the crop data and to save time and economy.

Revised AMC for the Application of SCS Method (SCS 유효우량 산정방법 적용을 위한 선행토양함수조건의 재설정(장평유역을 중심으로))

  • Park, Cheong-Hoon;Yoo, Chul-Sang;Kim, Joong-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.578-582
    • /
    • 2005
  • In this study, the conceptual foundation and development process of the Antecedent soil Moisture Condition(AMC) in SCS runoff curve number method are reviewed. Although the runoff volume is very sensitive with AMC condition, the AMC class limits developed in SCS(1972) are used in rainfall-runoff analysis without careful consideration. Tn this study, following the SCS curve number development process, rainfall-runoff characteristics of the Jang-Pyung subbasin subject to the Pyung-Chang River basin are analyzed to evaluate the reasonability of the AMC class limits at present. The New AMC class limits are proposed by the sensitive analysis of the antecedent rainfall - curve number value. As a result, the classification value of AMC-I with II is 22mm of antecedent 5-day rainfall amount, and the classification of AMC-II with III is 117mm in growing season. When the New AMC class limits are applied to Jang-Pyung subbasin, AMC probability distribution shows that the AMC-II has increased remarkably even though the AMC-I has a little higher value. But the AMC-III has the smallest one. According to the conceptual basis of the curve number method, the AMC probability distribution, the New AMC class limits adopted, gives reasonable results.

  • PDF

Correlation Analysis Between Geotechnical Properties and CBR Values of Subgrade Materials in Rural Road Construction (농촌도로 노상토 재료의 공학적 특성과 CBR값의 관계 분석)

  • 송태균;권무남
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.4
    • /
    • pp.89-98
    • /
    • 1996
  • This study was conducted to evaluate the relationships between the geotechnical properties and the CBR values of the subgrade materials used in the rural roal construction. A total of 77 Soil samples was investigated and tested from 45 agricultural and industrial sites in Kyungpook Province. The results obtained are as follows : 1. The maximum dry densities of the coarse grained soils are larger than those of the fine grained soils. The optimum moisture contents of the coarse grained soils are smaller than those of the fine grained scils. 2. The mean values of the medified CBR values of the soils classified by the USCS, are decreased in the order of GP-GM, SW-SM, GM, SC, SP-SM, ML, CL-ML. And, those classified by the AASHTO are decreased in the order of A-i-a, A-i-b, A-2-4, A-3, A-4, A-6, A-7-6. 3. As passing percentage of No.200 sieve is increased, the CBR Value of soils is decreased gradually. 4. As the optimum moisture contents of the soil is increased, the CBR values is decresed the maximum dry density of the soils increased, the CBR values increased. 5. The CBR values are decreased as Group-lndex(GI) are increased. And Activity(A) is showed no relation with the CBR values. 6. The relation ships between the modified CBR value and standand proctor compaction CBR value at 95% compaction ratio can he expressed as the following equation : Y(CERmod)= 2.3638 + 0.8922X(CBR25).

  • PDF

Effects of Soil Moisture Control and Dormancy Breaking Agents on Bud Burst and Fruiting for Double Cropping System in a Year in 'Kyoho' Grapes (포도 '거봉' 2기작재배를 위한 하계휴면타파에서 토양수분 조절과 휴면타파제 처리가 발아에 미치는 영향)

  • 오성도;김용현;최동근
    • Journal of Bio-Environment Control
    • /
    • v.11 no.2
    • /
    • pp.61-66
    • /
    • 2002
  • Double cropping system in a year in Kyoho grapes (Vitis labruscana L.) has currently been attempted in the plastic greenhouse. One of the problems in double cropping system is the promotion of bud break in summer season and shoot fertility. Effects of the control of soil moisture tension near the root zone and treatments of bud dormancy breaking agents on bud breaking in summer were examined to promote the bud break for the second fruiting. The lignification of shoots was induced in July or August by the control of soil moisture tension in root zone environment. The first shoot growth was almost the same as that in common plastic greenhouses. The highest bud break value appeared in the plot of cyanamide chemicals mixed with merit blue as over 75% bud break rate. The bud break rate in the discontinuing plot in irrigation showed significantly higher in bud break than that in the continuing plot in irrigation. Despite of the final high bud break rate, the time of bud break was irregular.

Evaluation of satellite-based evapotranspiration and soil moisture data applicability in Jeju Island (제주도에서의 위성기반 증발산량 및 토양수분 적용성 평가)

  • Jeon, Hyunho;Cho, Sungkeun;Chung, Il-Moon;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.10
    • /
    • pp.835-848
    • /
    • 2021
  • In Jeju Island which has peculiarity for its geological features and hydrology system, hydrological factor analysis for the effective water management is necessary. Because in-situ hydro-meteorological data is affected by surrounding environment, the in-situ dataset could not be the spatially representative for the study area. For this reason, remote sensing data may be used to overcome the limit of the in-situ data. In this study, applicability assessment of MOD16 evapotranspiration data, Globas Land Data Assimilation System (GLDAS) based evapotranspiration/soil moisture data, and Advanced SCATterometer (ASCAT) soil moisture product which were evaluated their applicability on other study areas was conducted. In the case of evapotranspiration, comparison with total precipitation and flux-tower based evapotranspiration were conducted. And for soil moisture, 6 in-situ data and ASCAT soil moisture product were compared on each site. As a result, 57% of annual precipitation was calculated as evapotranspiration, and the correlation coefficient between MOD16 evapotranspiration and GLDAS evapotranspiration was 0.759, which was a robust value. The correlation coefficient was 0.434, indicating a relatively low fit. In the case of soil moisture, in the case of the GLDAS data, the RMSE value was less than 0.05 at all sites compared to the in-situ data, and a statistically significant result was obtained as a result of the significance test of the correlation coefficient. However, for satellite data, RMSE over than 0.05 were found at Wolgak and there was no correlation at Sehwa and Handong points. It is judged that the above results are due to insufficient quality control and spatial representation of the evapotranspiration and soil moisture sensors installed in Jeju Island. It is estimated as the error that appears when adjacent to the coast. Through this study, the necessity of improving the existing ground observation data of hydrometeorological factors is emphasized.

Development of a Moldboard Plow to Invert Furrow Slice at the Same Position (토양의 제자리 반전을 위한 몰드보드 플라우의 개발)

  • 이규승;박원엽;권병기
    • Journal of Biosystems Engineering
    • /
    • v.29 no.1
    • /
    • pp.9-20
    • /
    • 2004
  • On the basis of design theory of soil inversion, two types of moldboard plow with secondary soil mover was designed and constructed to invert furrow slice at same position with furrow bottom. A series of soil bin experiment was carried to investigate the performance of prototypes. First prototype of new concept plow showed two kinds of problems during the preliminary experiment. For the plowing depth of 6cut the prototype did not invert the furrow slice, instead it just cut furrow bottom and the furrow slice returned to the original position. For the plowing depth of 8cm, there was soil clogging problem at the rear part of plow. From the above results it was concluded that the first prototype can not be used for the inversion of furrow slice at same position with furrow bottom. Second prototype could invert furrow slice at the same position with furrow bottom, but the performance was affected by soil moisture content soil hardness and plowing speed very much. For the higher soil moisture content, for the higher soil hardness and higher plowing speed, the prototype showed higher soil inversion performance. For the second prototype the inversion ratio was almost 100%, inversion angle was in the range of 90 to 100 degree and side displacement was less than 4 cm. But the furrow slice was not continuous, it was cut in the length of 30 to 40 cm. The reason why the furrow slice was cut in that length is blamed for the design of moldboard surface. The specific draft of prototype was in the range of 37.24 kN/㎡ to 42.14 kN/㎡ this value is a little higher than that of the conventional plow, or from 30.38 kN/㎡ to 33.32 kN/㎡. But the difference was not so big. The inversion performance of the second prototype for the field experiment was much better than that of soil bin experiment due to the better soil and operational conditions. Sticky and compacted soil conditions, and higher plowing speed was suitable for the plowing operation of the second prototype

Physiological Response of Tetrapleura tetraptera (Schum. and Thonn.) Taub. to Soil Textural Class, Moisture and Light Intensity

  • Akinyele, Adejoke O.;Wakawa, Lucky Dartsa
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.2
    • /
    • pp.97-104
    • /
    • 2017
  • Investigation was carried out on response of Tetrapleura tetraptera (Schum. and Thonn.) to soil, water and light with the view of its domestication and introduction to different ecological regions. The experiment was arranged in a factorial experiment of $3{\times}3{\times}3$ in a completely randomized design (CRD) with three replicates. The factors were: soil textural class (Loamy sand, Sand and Sandy clay loam), watering regime (daily, twice a week and once a week) and light intensity (100%, 75% and 50%). Soil textural classes had significant influence on collar diameter, stem height, number of leaflets, root/shoot ratio and relative growth rate of Tetrapleura seedlings. Seedlings grown on loamy sand recorded the highest mean value- 2.28 mm for collar diameter, stem height- 12.9 cm, number of leaflets- 19.9, chlorophyll b- $0.34mg\;mL^{-1}$, leaf relative water content- 27.4% and relative growth rate- $0.037mg\;g^{-1}\;day^{-1}$. Watering regime had significant influence on the collar diameter of Tetrapleura. Seedlings watered daily recorded the highest mean value- 2.25 mm for collar diameter. Light intensity significantly influenced collar diameter and root/shoot ratio. Seedlings exposed to 100% light intensity recorded higher mean value for collar diameter- 2.28 mm and root/shoot ratio- 1.481 cm. The interaction between soil textural class and light intensity significantly affected collar diameter, stem height and number of leaflets. Higher mean value for collar diameter (2.47 mm) stem height (13.25 cm) and number of leaflets (21.16) were recorded while the interaction between soil textural class, light intensity and watering regime was significant for only number of leaflets. Tetrapleura exhibited some level of tolerance to different soil texture, drought and light intensity. Therefore, Tetrapleura has the potentials to be raised in different ecological zones characterized by difference in soil, rainfall and amount of sunshine.

The Shear Strength Characteristics of Weathered Granite Soil in Unsaturated State (불포화(不飽和) 화강암질풍화토(花崗岩質風化土)의 전단강도(剪斷强度) 특성(特性))

  • Cho, Seong Seup;Kang, Yea Mook;Chee, In Taeg
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.1
    • /
    • pp.86-100
    • /
    • 1985
  • In order to investigate the strength characteristics of weathered granite soils in unsaturated state, the five physically different weathered granite soils and the common soil (sandy loam) were examined. The disturbed and the undisturbed material were prepared for triaxial compression test. The following conclusions were drawn from the study; 1. Dry density of the undisturbed soil samples was lower than maximum dry density determined from the compaction test and it showed the higher value at the well graded soil. 2. The failure strength of the samples decreased with the increase of moisture content of the soil and these results were highly pronounced at the common soil sample having a good cohesive property. 3. On weathered granite soils, the cohesion was lower measured and the internal friction angle highly, the decrease rate at internal friction angle with increase of moisture content of the soil was more significant than that of cohesion 4. The modulus of deformation of the samples decreased with increase of moisture content of the soil and these phenomena were highly pronounced at the weathered granite soils than common soil. 5. The failure strength of the samples increased with in crease of confining pressure and effect of confining pressure on failure strength was highly significant at the lower moisture content of the soil.

  • PDF