• Title/Summary/Keyword: Soil moisture model

Search Result 431, Processing Time 0.033 seconds

The Relationship between Loading Velocity and Ground Heaving Characteristics (재하속도와 지반융기 특성의 상호관계)

  • Oh, Se-Wook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.3
    • /
    • pp.77-83
    • /
    • 2006
  • The purpose of this study is to analyze lateral displacement behavior of clay layers in case of the banking in soft ground through model tests. Seven model tests varying with thickness of soft clay and loading velocity are performed to correlate between ground heaving and loading velocity. In case of low loading velocity, vertical settlement below loading plate and small ground heaving are obviously observed. In case of the high loading velocity, it is shown that both soil displacement at the end of a loading plate and surface heaving are large. In addition, the calculated displacements show good agreement with three cases of field measurements in clay with high moisture contents so that we can predict the range of heaving area and the amount of heaving.

  • PDF

Comparison between Measurements and Scattering Model for Polarimetric Backscattering from Vegetation Canopies (식물층에서의 편파별 후방 산란 측정과 산란 모델의 비교)

  • Hong Jin-Young;Oh Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.9 s.112
    • /
    • pp.804-810
    • /
    • 2006
  • In this paper, we describe a measurement technique for the backscattering coefficient and ground truth of a vegetation canopy in detail. A simple microwave backscattering model for vegetation canopies is verified by being compared with this measurement. An R-band$(1.7\sim2.0GHz)$ scatterometer system is used to measure the backscattering coefficient of a vegetated area in the Han-river park for various incidence angles and a wide range of the soil moisture contents. It is found that the model agrees quite well with the measurements for co-polarized radar backscatter, and needs a correction for cross polarized radar backscatter.

Estimation and assessment of natural drought index using principal component analysis (주성분 분석을 활용한 자연가뭄지수 산정 및 평가)

  • Kim, Seon-Ho;Lee, Moon-Hwan;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.6
    • /
    • pp.565-577
    • /
    • 2016
  • The objective of this study is to propose a method for computing the Natural Drought Index (NDI) that does not consider man-made drought facilities. Principal Component Analysis (PCA) was used to estimate the NDI. Three monthly moving cumulative runoff, soil moisture and precipitation were selected as input data of the NDI during 1977~2012. Observed precipitation data was collected from KMA ASOS (Korea Meteorological Association Automatic Synoptic Observation System), while model-driven runoff and soil moisture from Variable Infiltration Capacity Model (VIC Model) were used. Time series analysis, drought characteristic analysis and spatial analysis were used to assess the utilization of NDI and compare with existing SPI, SRI and SSI. The NDI precisely reflected onset and termination of past drought events with mean absolute error of 0.85 in time series analysis. It explained well duration and inter-arrival time with 1.3 and 1.0 respectively in drought characteristic analysis. Also, the NDI reflected regional drought condition well in spatial analysis. The accuracy rank of drought onset, termination, duration and inter-arrival time was calculated by using NDI, SPI, SRI and SSI. The result showed that NDI is more precise than the others. The NDI overcomes the limitation of univariate drought indices and can be useful for drought analysis as representative measure of different types of drought such as meteorological, hydrological and agricultural droughts.

Effects of organic matter sources on nitrogen supply potential in arable land (농경지에서 유기물 시용에 의한 질소 공급 효과)

  • Lee, Ye-Jin;Yun, Hong-Bae;Song, Yo-Sung;Lee, Chang-Hoon;Sung, Jwa-Kyung;Ha, Sang-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.4
    • /
    • pp.431-437
    • /
    • 2015
  • Recently, assessment of nitrogen balance has been required for environmental agriculture. Nutrient management using organic matters in farmlands has been strongly required as a means of extending resource-cycling agriculture and reduction of nitrogen balance. Organic matters-derived nutrients and soil-available nitrogen should be necessarily considered to manage nutrient balance in soil-plant system. In this study, we reviewed the amount of N supply according to types of organic matter such as livestock compost and green manure in arable land. In case of applied livestock compost in soil, nitrogen mineralization was influenced by nitrogen amount of livestock manure and mixed materials. And nitrogen mineralization of green manure in arable land was influenced by types of crop and return period of green manure because of change of C/N ratio. Also, nitrogen supply by organic matter in arable land can be changed by environmental factors such as temperature, moisture in soil. Therefore, nitrogen supply according to C/N ratio of organic matter and analysis method for estimation of soil nitrogen supply availability should be evaluated to set up the nutrient management model.

Eatimation of the Quantity of Watershed Evapotranspiration considering soil moisture contents (토양수분량과 지하수량변화 측정에 의한 유역증발산량 추정)

  • Seo, Soung-Pil;Han, Young-Min;Kim, Tai-Cheol
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.241-244
    • /
    • 2002
  • A formula of watershed evapotranspiration by Penman or Thonthwaite or Lowry-Johnson was used to measure its quantity of evapotranspiration until now. These formula were derived for Foreign country and, it is rather difficult to apply the above formulas to the Korean watershed. These measuring methods are merely used to measure the monthly quantities of evapotranspiration. At the research CE of a coefficient of evapotranspiration for a watershed were newly presented, which was utilized for the calculation of Beken's formula in the DAWAST model.

  • PDF

A Development of Multivariate Stochastic Model for Soil Moisture Simulation (다변량 추계학적 토양수분 모의 기법 개발)

  • Park, Jong-Hyeon;Lee, Jong-Hwa;Kim, Seong-Joon;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.409-409
    • /
    • 2017
  • 유역단위에서 수문모델링을 수행함에 있어 토양수분은 물수지 관점에서 매우 중요한 인자로 고려된다. 더욱이, 최근 발생빈도가 커지고 있는 가뭄을 효과적으로 평가하고 예측하는 데에도 활용성이 매우 큰 것으로 인식되고 있다. 이러한 중요성에도 불구하고, 가용자료의 부족, 자료의 부정확성 등으로 인해 실제 유역모델링을 수행하는데 있어 활용도는 매우 적다. 이러한 점에서 본 연구에서는 동질성이 확보된 유역단위를 기준으로 다지점의 토양수분 자료를 추계학적으로 모의할 수 있는 기법을 개발하고자 한다. 토양함수자료는 지속성(persistence)이 매우 큰 특징을 가진다. 즉, 상태의 지속성이 크며 메모리가 오랫동안 유지된다는 점에서 추계학적 모의가 가능할 것으로 판단된다. 이러한 지속성을 이용함과 동시에 토양함수를 다양한 상태로 분리하고 이들 상태들간의 천이확률을 효과적으로 모의할 수 있다면 관측 토양함수 자료의 통계적 특성 재현이 가능하다. 본 연구에서는 용담댐 유역에 대해서 개발된 모형을 적용하고 활용성을 검토하고자 한다.

  • PDF

Estimating soil moisture using machine learning approach: A Case Study to Yongdam watershed (기계학습 기반의 토양함수 예측 기법 개발 (용담댐 시험유역을 중심으로))

  • Huy, Nguyen Dinh;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.167-167
    • /
    • 2018
  • 토양수분은 토양에 포함된 평균 수분량을 나타내며 수문 순환 관점에서 매우 중요한 수문변량 중 하나이다. 본 연구에서는 대표적인 기계학습 방법인 Support Vector Machine (SVM)을 이용한 토양 함수 예측 기법을 개발하고자 하며, 예측인자로서 원격 탐측 기반의 토양함수자료, 강수량, 온도 등을 활용하고자 한다. SVM은 Kernel 함수를 이용하여 복잡한 비선형 관계를 선형 가정을 통해서 해석하는 기계학습 방법으로서 전역모델(global model)로서 다양한 수문기상분야에 적용이 이루어지고 있다. SVM의 장점은 일정 부분의 오차를 허용함으로서 모형의 일반화 측면에서 기존 인공신경망(artificial neural network, ANN)에 비해 우수한 성능을 나타내며, 특히 예측모형으로서 적용성이 매우 크다. 본 연구에서는 과거 토양 함수 자료와 강수, 온도, 위성 관측 기반 정보 등을 이용하여 모형을 적합시키고 이를 미계측 유역으로 확장하는데 연구의 목적이 있으며, 본 연구를 통해 제안된 모형은 용담댐 시험유역을 대상으로 적용되며 기존 ANN 모형 및 다중회귀분석 결과와 비교를 통해 모형의 적합성을 평가하고자한다.

  • PDF

Design and Simulation of RFID Tag for Container-Grown Seedlings System

  • Lee, Sang-Hyun;Kim, Kyu-Ha;Jeong, Byeong-Su
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.292-299
    • /
    • 2022
  • In precision agriculture (PA), the differences of the agriculture related parameters such as temperature, humidity, soil moisture among different fields are considered and analyzed to precisely utilize water, pesticides, fertilizer, seeds, etc. in fields. Hence, it becomes possible to increase the profit, reduce waste and maintain quality products. This paper suggests a framework for RFID sensor network in view of PA, especially, associated with Container-grown seedlings(CGS), and presents the analysis and simulation by using Ultra High Frequency (UHF) RFID tag system. The simulation is divided into the transmitter and receiver part using Matlab/Simulink. The architecture of the model is flexible to achieve different modulation and encoding types. Finally, some results of the simulation are presents.

Application of SDAHL-74 Watershed Model to a Long Term Runoff Analysis in the Mountainous Watershed (산지유역에 대한 USDAHL-74 유역수문모형의 장기유출 해석적용)

  • 권순국;고덕구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.2
    • /
    • pp.53-63
    • /
    • 1987
  • Due to their wide range of application, deterministic comprehensive hydrologic models using digital computers have been developed in all countries of the world and researches are being undertaken for their appropriate applications. The aim of this study has been to demonstrate the practical implementation of a physically based distributed hydrologic model, the USDAHL-74 model and to investigate its ability to simulate the long term estimate of water balance quantities in a Korean mountainous watershed. Application of the model to Dochuk watershed indicates the following results. 1.Since the USDAHL-74 model includes all the major components of the hydrologic cycle in agricultural watersheds, thus is comprehnsive, the model seems to have a wide range of application from the fact that simulation results obtained are not only runoff volumes m various time units but their spatial variation as well as even soil moisture within the watershed. 2.An approximate calibration to determine the parameter values in the model using various data obtained from D0chuk shed shows that the simulation error of yearly runoff volume is only 0.6 % and a correlation coefficient between observed daily runoff volume and simulated one is 0.91 in all calibrated period.3.As a verification test of the model, runoff volumes are simulated using 1986 year data without changing the parameter values determined by 1985 year data. The tests show that the USDAHL-74 model is a flexible tool and that realistic production to simulate the long term estimate of runoff in Korean mountainous watershed could be obtained using only a short period of calibration.4. Despite of the encouraging results, there still remain minor problems concerning the practical application of the model to improve the result of simulations. Some of these are the small descrepancies between observed and simulated daily runoff volume appeared in the vicinity of peaks and the recession of1 the daily hydrographs and the model performance for the frozen ground and melting process in the model. 5. Alough the use of parameter with physical significance and the ability to improve calibrations on the basis of physical reasoning represents advantages in the simulation for ungaged watersheds, further researches are needed to use the USDAHL-74 mode to simulate runoff in ungaged watersheds.

  • PDF

Regionalized Regression Model for Monthly Streamflow in Korean Watersheds (韓國河川의 月 流出量 推定을 위한 地域化 回歸模型)

  • Kim, Tai-Cheol;Park, Sung-Woo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.2
    • /
    • pp.106-124
    • /
    • 1984
  • Monthly streanflow of watersheds is one of the most important elements for the planning, design, and management of water resources development projects, e.g., determination of storage requirement of reservoirs and control of release-water in lowflow rivers. Modeling of longterm runoff is theoretically based on water-balance analysis for a certain time interval. The effect of the casual factors of rainfall, evaporation, and soil-moisture storage on streamflow might be explained by multiple regression analysis. Using the basic concepts of water-balance and regression analysis, it was possible to develop a generalized model called the Regionalized Regression Model for Monthly Streamflow in Korean Watersheds. Based on model verification, it is felt that the model can be reliably applied to any proposed station in Korean watersheds to estimate monthly streamflow for the planning, design, and management of water resources development projects, especially those involving irrigation. Modeling processes and properties are summarized as follows; 1. From a simplified equation of water-balance on a watershed a regression model for monthly streamflow using the variables of rainfall, pan evaporation, and previous-month streamflow was formulated. 2. The hydrologic response of a watershed was represented lumpedly, qualitatively, and deductively using the regression coefficients of the water-balance regression model. 3. Regionalization was carried out to classify 33 watersheds on the basis of similarity through cluster analysis and resulted in 4 regional groups. 4. Prediction equations for the regional coefficients were derived from the stepwise regression analysis of watershed characteristics. It was also possible to explain geographic influences on streamflow through those prediction equations. 5. A model requiring the simple input of the data for rainfall, pan evaporation, and geographic factors was developed to estimate monthly streamflow at ungaged stations. The results of evaluating the performance of the model generally satisfactory.

  • PDF