• Title/Summary/Keyword: Soil moisture model

Search Result 431, Processing Time 0.026 seconds

Development of a Cell-based Long-term Hydrologic Model Using Geographic Information System(II) - Pre and Post Processor Development - (지리정보시스템을 이용한 장기유출모형의 개발(II) -전.후처리 시스템 개발-)

  • 최진용;정하우;김대식
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.2
    • /
    • pp.103-112
    • /
    • 1997
  • A CELTHYM(CEll-based Long-term HYdrologic Model), a pre-processor and a post-processor that can he integrated with geographic information system(GIS) were developed to predict the stream flow of a small agricultural watershed. Three kinds of routines, that are watershed boundary extraction routine(WBER), curve number calculation routine(CNR) and maximum available soil moisture calculation routine(MASR) composed pre-processor that was nicely interfaced with CELTRYM and GIS. Two kinds of routines, grapher and map composer composed post-processor that was well adapted CELTHYM output to chart making and GIS map making. The developed pre-post processor was useful for the GIS integration and spatial comprehension of the CELTHYM output.

  • PDF

Estimation of Spatial Evapotranspiration using the Relationship between MODIS NDVI and Morton ET - For Chungjudam Watershed - (MODIS NDVI와 Morton 증발산량의 관계를 이용한 공간증발산량 산정 기법 연구 - 충주댐유역을 대상으로 -)

  • Shin, Hyung-Jin;Ha, Rim;Park, Min-Ji;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.19-24
    • /
    • 2010
  • The purpose of this study is to estimate monthly Morton evapotranspiration (ET) using normalized difference vegetation index (NDVI) from MODIS satellite images. Morton ET for land surface conditions was evaluated by using daily meteorological data, and the monthly averaged Morton ETs for each land cover were compared with the monthly NDVIs of three years (2000-2002) at Chungjudam Watershed. There was a high correlation between monthly NDVI and Morton ET for the watershed with average coefficient of determination, 0.80. By comparing the MODIS NDVI ET with SLURP Morton ET, the SLURP ET was smaller than the MODIS NDVI ET. This was estimated from the consideration of soil moisture condition for the ET occurrence in the SLURP model, the limited information from the monthly NDVI values, and the errors from the derived regression equations.

Effectiveness of Sensitivity Analysis for Parameter Selection in CLIMEX Modeling of Metcalfa pruinosa Distribution

  • Byeon, Dae-hyeon;Jung, Sunghoon;Mo, Changyeun;Lee, Wang-Hee
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.410-419
    • /
    • 2018
  • Purpose: CLIMEX, a species distribution modeling tool, includes various types of parameters representing climatic conditions; the estimation of these parameters directly determines the model accuracy. In this study, we investigated the sensitivity of parameters for the climatic suitability calculated by CLIMEX for Metcalfa pruinosa in South Korea. Methods: We first changed 12 parameters and identified the three significant parameters that considerably affected the CLIMEX simulation response. Results: The result indicated that the simulation was highly sensitive to changes in lower optimal temperatures, lower soil moisture thresholds, and cold stress accumulation rate based on the sensitivity index, suggesting that these were the fundamental parameters to be used for fitting the simulation into the actual distribution. Conclusion: Sensitivity analysis is effective for estimating parameter values, and selecting the most important parameters for improving model accuracy.

Effect of Soil Water Content on Growth, Photosynthetic Rate, and Stomatal Conductance of Kimchi Cabbage at the Early Growth Stage after Transplanting (정식 후 초기 생장기 배추의 생장, 광합성 속도 및 기공전도도에 미치는 토양수분의 영향)

  • Kim, Sung Kyeom;Lee, Hee Ju;Lee, Hee Su;Mun, Boheum;Lee, Sang Gyu
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.151-157
    • /
    • 2017
  • The objectives of this study were to determine the impact of soil water content on the growth, stomatal conductance, and photosynthesis of Kimchi cabbage and to evaluate proper parameters for development of growth models. There were five levels of irrigation amount treatments (0, 200, 300, 400, and 500 mL/d/plant) and those were commenced at one day after transplanting (DAT). We measured soil water content, stomatal conductance, photosynthesis characteristics, and the A-Ci curve. The growth of Kimchi cabbage as affected by irrigation amount was evaluated at 38 days after transplanting, however, the growth with 0 and 200 mL/d/plant irrigation amount treatments measured at 29 DAT. The relationship between soil water content and stomatal conductance was highly correlated ($r^2=0.999$) and the function represented by y = 6097.4x - 4.2984. The stomatal conductance of Kimchi cabbage leaves showed $300mmol{\cdot}m^{-2}{\cdot}s^{-1}$ when the soil water content was below $0.05m^3/m^3$. The stomatal conductance was rapidly decreased by scarcity of soil moisture. A-Ci curve indicated normal curve in fully irrigation treatment (500 mL/d/plant), however, $CO_2$ couldn't diffuse through the intercellular Kimchi cabbage leaves treated with 0 mL/d/plant. The dry weight of full irrigation treatment was greater approximately 6.8 times than that of deficit irrigation (0 mL/d/plant). In addition, leaf area index showed a logarithmic function (y = 16.573 + 3.398 ln x) with soil water content and that of R-squared represents 0.913. Results indicated that the soil water content was highly correlated with stomatal conductance and leaf area index. Indeed, the scarcity soil moisture reduced photosynthesis and retarded growth.

Application study of conceptual rainfall-runoff models for regionalization of Miho catchment, Chungbuk (미호천 상류유역의 지역화 연구를 위한 개념적 강우유출 모형의 평가)

  • Lee, Hyo-Sang;Choi, Ho-Hoon;Joo, Jae-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.285-285
    • /
    • 2011
  • 우리나라의 하천 상류지역의 유역들은 신뢰할 수 있는 수문자료의 미비로 인하여, 관행적으로 모형의 변수를 산정하여 강우유출모형을 적용하고 있다. 그러나 상류지역의 빈번한 홍수 피해 및 수자원관리의 문제발생 등으로 인하여 이러한 상류지역의 중소유역의 신뢰할 수 있는 홍수량산정 방법이 요구되고 있다. 이는 영국의 국가 홍수량 산정 표준방법(Flood Estimation Handbook)과같이 강우유출모형의 지역화를 통하여 해결 할 수 있다. 지역화를 위한 강우유출모형의 선정을 위하여 9개의 개념적 강우유출모형을 충청북도 미호천 상류 7개의 소유역에 적용하여 모형의 성능을 평가하였다. 이는 유효우량 산정을 위한 3개의 개념적 토양저류함수 모형(Soil Moisture Accounting: Modified Penman Type Model(MP), Catchment Wetness Index Model(CWI), Probability Distribution Model(PDM))과 3개의 유역유출을 위한 3개의 개념적 유출모형(Routing: 2-Conceptual Reservoir Model(2PAR), 3-Conceptual Reservoir Model(3PAR), Marcropore Model(2PMP))의 조합으로 총 9개의 모형을 검토하였다. 이를 검정기간(2004.01.01-2007.12.31) 과 검증기간(2008.01.01-2009.12.31)의 장단기 유출성능을 Nash Sutcliffe Efficiency 로 평가한 결과, 시간 단위의 단기모의에서는 CWI-2PMP와 PDM-2PMP모형이, 일 단위의 장기모의에서는 CWI-3PAR와 PDM-2PMP가 우수한 성능을 보이고 있다. 향후 금강 상류유역의 기본 강우유출모형으로 PDM-2PMP모형을 선정한다.

  • PDF

Grid-Based KlneMatic Wave STOrmRunoff Model (KIMSTORM)(I) - Theory and Model - (격자기반의 운동파 강우유출모형 개발(I) - 이론 및 모형 -)

  • Kim, Seong-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.303-308
    • /
    • 1998
  • A grid-based KInematic were STOrm Runoff Model (KIMSTORM) with predicts temporal and spatial distributions of saturalted orerland flow, subsurface flow and stream flow in a watershed was developed. The model adopts the single overland flowpath algorithm and simulates surface and/or subsurface water depth at each grid element by using grid-based water balance of hydrologic components. The model which is programmed by C-language uses ASCII-formatted map data supported by the irregular gridded map of the GRASS(Geographic Resources Analysis Support System) GIS and generates the spatial distribution maps of discharge, flow depth and soil moisture within the watershed.

  • PDF

The Development of Estimation Model (AFKAE0.5) for Water Balance and Soil Water Content Using Daily Weather Data (일별 기상자료를 이용한 농경지 물 수지 및 토양수분 예측모형 (AFKAE0.5) 개발)

  • Seo, Myung-Chul;Hur, Seung-Oh;Sonn, Yeon-Kyu;Cho, Hyeon-Suk;Jeon, Weon-Tai;Kim, Min-Kyeong;Kim, Min-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1203-1210
    • /
    • 2012
  • As the area of upland crops increase, it is become more important for farmers to understand status of soil water at their own fields due to key role of proper irrigation. In order to estimate daily water balance and soil water content with simple weather data and irrigation records, we have developed the model for estimating water balance and soil water content, called AFKAE0.5, and verified its simulated results comparing with daily change of soil water content observed by soil profile moisture sensors. AFKAE0.5 has two hypothesis before establishing its system. The first is the soil in the model has 300 mm in depth with soil texture. And the second is to simplify water movement between the subjected soil and beneath soil dividing 3 categories which is defined by soil water potential. AFKAE0.5 characterized with determining the amount of upward and downward water between the subjected soil and beneath soil. As a result of simulation of AFKAE0.5 at Gongju region with red pepper cultivation in 2005, the water balance with input minus output is recorded as - 88 mm. the amount of input water as precipitation, irrigation, and upward water is annually 1,043, 0, and 207 mm, on the other, output as evapotranspiration, run-off, and percolation is 831, 309, and 161 mm, respectively.

Modeling the effects of excess water on soybean growth in converted paddy field in Japan. 2. modeling the effect of excess water on the leaf area development and biomass production of soybean

  • Nakano, Satoshi;Kato, Chihiro;Purcell, Larry C.;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.308-308
    • /
    • 2017
  • The low and unstable yield of soybean has been a major problem in Japan. Excess soil moisture conditions are one of the major factors to restrict soybean productivity. More than 80 % of soybean crops are cultivated in converted paddy fields which often have poor drainage. In central and eastern regions of Japan, the early vegetative growth of soybean tends to be restricted by the flooding damage because the early growth period is overlapped with the rainy season. Field observation shows that induced excess water stress in early vegetative stage reduces dry matter production by decreasing intercepted radiation by leaf and radiation use efficiency (RUE) (Bajgain et al., 2015). Therefore, it is necessary to evaluate the responses of soybean growth for excess water conditions to assess these effects on soybean productions. In this study, we aim to modify the soybean crop model (Sinclair et al., 2003) by adding the components of the restriction of leaf area development and RUE for adaptable to excess water conditions. This model was consist of five components, phenological model, leaf area development model, dry matter production model, plant nitrogen model and soil water balance model. The model structures and parameters were estimated from the data obtained from the field experiment in Tsukuba. The excess water effects on the leaf area development were modeled with consideration of decrease of blanch emergence and individual leaf expansion as a function of temperature and ground water level from pot experiments. The nitrogen fixation and nitrogen absorption from soil were assumed to be inhibited by excess water stress and the RUE was assumed to be decreasing according to the decline of leaf nitrogen concentration. The results of the modified model were better agreement with the field observations of the induced excess water stress in paddy field. By coupling the crop model and the ground water level model, it may be possible to assess the impact of excess water conditions for soybean production quantitatively.

  • PDF

The Development and Application of the Quasi-dynamic Wetness Index and the Dynamic Wetness Index (유사 동력학적 습윤지수와 동력학적 습윤지수의 개발과 적용)

  • Han, Ji-Young;Kim, Sang-Hyun;Kim, Nam-Won;Kim, Hyun-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.961-969
    • /
    • 2003
  • Formulation of quasi-dynamic wetness index was derived to predict the spatial and temporal distribution of the soil moisture. The algorithm of dynamic wetness index was developed through introducing the convolution integral with the rainfall input. The spatial and temporal behaviors of the wetness index of the Sulmachun Watershed was calculated using the digital elevation model(DEM) and the rainfall data for two years. The spatial distribution of the dynamic wetness index shows most dispersive feature of flow generation among the three assumptions of steady, quasi-dynamic and dynamic. The statistical distribution of the quasi-dynamic wetness index and the dynamic wetness index approximate to the steady state wetness index as the time step is increased. The dynamic wetness index shows mixed distribution of the normalized probability density function.

The Influence of the Infinitive Flow Direction Algorithm and Horn Slope Algorithm on the Topographic Index and Hydrological Responses of the TOPMODEL (무한 유향 알고리듬과 Horn 경사 알고리듬이 TOPMODEL 지형지수와 수문반응에 미치는 영향)

  • Byun, Jong-Min;Kim, Jong-Wook
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.3
    • /
    • pp.207-223
    • /
    • 2009
  • The TOPMODEL Topographic Index (TI) is widely used to predict the spatial distribution of soil moisture contents, The TI is one of terrain indices which are frequently used in spatially distributed environmental modelings. There have been studies on the evaluation and improvement of the TI. Most of them. however, have focused on only the modified multiple flow direction algorithm and algorithms for slope calculation have been paid little attention, In this research, we attempted to improve the TI by utilizing the infinitive flow direction (Dinf) algorithm and Horn slope algorithm. Then we attempt to analyze and evaluate the influence of the improved TI on hydrological responses of the TOPMODEL As a result. our approaching using the infinitive flow direction (Dinf) and Horn slope algorithm made the TI better than the multiple flow direction (MD8) - the multiple descent slope (MDS) algorithm. However, the model efficiency of discharges at the outlet was not increased. Our research may provide an insight to choose appropriate algorithms for calculating flow direction and slope in spatially distributed environmental modelings.