• Title/Summary/Keyword: Soil moisture map

Search Result 40, Processing Time 0.031 seconds

Univariate Analysis of Soil Moisture Time Series for a Hillslope Located in the KoFlux Gwangneung Supersite (광릉수목원 내 산지사면에서의 토양수분 시계열 자료의 단변량 분석)

  • Son, Mi-Na;Kim, Sang-Hyun;Kim, Do-Hoon;Lee, Dong-Ho;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.2
    • /
    • pp.88-99
    • /
    • 2007
  • Soil moisture is one of the essential components in determining surface hydrological processes such as infiltration, surface runoff as well as meteorological, ecological and water quality responses at watershed scale. This paper discusses soil moisture transfer processes measured at hillslope scale in the Gwangneung forest catchment to understand and provide the basis of stochastic structures of soil moisture variation. Measured soil moisture series were modelled based upon the developed univariate model platform. The modeling consists of a series of procedures: pre-treatment of data, model structure investigation, selection of candidate models, parameter estimation and diagnostic checking. The spatial distribution of model is associated with topographic characteristics of the hillslope. The upslope area computed by the multiple flow direction algorithm and the local slope are found to be effective parameters to explain the distribution of the model structure. This study enables us to identify the key factors affecting the soil moisture distribution and to ultimately construct a realistic soil moisture map in a complex landscape such as the Gwangneung Supersite.

Construction of NCAM-LAMP Precipitation and Soil Moisture Database to Support Landslide Prediction (산사태 예측을 위한 NCAM-LAMP 강수 및 토양수분 DB 구축)

  • So, Yun-Yeong;Lee, Su-Jung;Choi, Sung-Won;Lee, Seung-Jae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.152-163
    • /
    • 2020
  • The present study introduces a procedure to prepare and manage a high-resolution rainfall and soil moisture (SM) database in the LAMP prediction system, especially for landslide researchers. The procedure also includes converting the data into spatial resolution suitable for their interest regions following proper map projection methods. The LAMP model precipitation and SM data are quantitatively and qualitatively evaluated to identify the model prediction characteristics using the ERA5 reanalysis precipitation and observed 10m depth SM data. A detailed process of converting LAMP Weather Research and Forecasting (WRF) output data for 10m horizontal resolution is described in a step-wise manner, providing technical convenience for users to easily convert NetCDF data from the WRF model into TIF data in ArcGIS. The converted data can be viewed and downloaded via the LAMP website (http://df.ncam.kr/lamp/index.do) of the National Center for AgroMeteorology. The constructed database will contribute to monitoring and prediction of landslide risk prior to landslide response steps and should be data quality controlled by more observation data.

Rainfall-Runoff Analysis with Soil Moisture Accounting Model (토양습윤모형을 이용한 강우-유출분석)

  • Hwang Ma ha;Ko Ick Hwan;Jeong Woo Chang;Maeng Seung Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.605-609
    • /
    • 2005
  • This study is to perform the rainfall-runoff analysis of the basin of Yongdam dam where is loacted in the Geumriver basin. The model used is the SAC-SMA model which was developed by U.S. National Weather Service. The Precipitation data used as the input data of the model are daily ones observed in 2002 and the mean of values recorded in 5 rainfall stations. The evaporation data are used observed in Daejeon meteorological station. The geographical data such as basin slope and stream gradient are elicited from the numerical map analysis. In the verification through the comparison of calculated daily inflow with observed one, parameters used in the model are estimated manually. As the result of verification, total annual calculated inflow is 13,547CMS and agree accurately with the observed one. During the period of one year of 2002, before 100 days and after 250 days, the soil moisture condition in the upper zone was significantly dry and in spite of the rainfall in this period, the runoff was not generated. Through this result, we can observe that the moisture condition in the soil affects strongly the runoff in a basin.

  • PDF

Development of GRld-eased Soil MOsture Routing Model (GRISMORM) Applied to Bocheongchun Watershed (격자기반의 토양수분추적표형 개발 : 보청천 유역 사례연구)

  • 김성준;채효석
    • Spatial Information Research
    • /
    • v.7 no.1
    • /
    • pp.39-48
    • /
    • 1999
  • A GRId-based Soil MOsture Routing Model(GRISMORM) which predicts temporal variation and spatial distribution of water balance on a daily time step for each grid element of the watershed was developed. The model was programmed by C-language which aims for high flexibility to any kind of GIS softwares. The model uses ASCII-formatted map data supported by the irregular gridded map of the GRASS(Geographic Resources Analysis Support System)-GIS and generates daily or monthly spatial distribution map of water balance components within the watershed. The model was applied to Ipyunggyo watershed(75.6$km^2$) ; the part of Bocheongchun watershed. Predicted streamflows resulting from two years(95 and 96) daily data were compared with those observed at the watershed outlet. The results of temporal variation and spatial distribution of soil moisture are also presented by using GRASS.

  • PDF

Spatial merging of satellite based soil moisture and in-situ soil moisture using conditional merging technique (조건부 합성방법을 이용한 위성관측 토양수분과 지상관측 토양수분의 합성)

  • Lee, Jaehyeon;Choi, Minha;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.3
    • /
    • pp.263-273
    • /
    • 2016
  • This study applied conditional merging (CM) spatial interpolation technique to obtain the satellite and in-situ composite soil moisture data. For the analysis, 24 gages of hourly in-situ data sets from the Rural Development Administration (RDA) of Korea and the satellite soil moisture data retrieved from Advanced Microwave Scanning Radiometer-Earth observing system (AMSR-E) were used. In order to verify the performance of the CM method, leave-one-out cross validation was used. The cross validation result was spatially interpolated to figure out spatial correlation of the CM method. The results derived from this study are as follow: (1) The CM method produced better soil moisture map over Korean Peninsula than AMSR-E did for the over 100 days out of total 113 days considered for the analysis. (2) The method of CM showed high correlation with gage density and better performance on the western side of Korean peninsula due to high spatial gauge density. (3) The performance of CM is not affected by the non-rainy season unlike to AMSR-E data is. Overall, the result of this study indicates that the CM method can be applied for predicting soil moisture at ungaged locations.

Development of Detailed Soil Resistivity Map(1/5000) in Kwachon (과천지역의 상세 토양비저항도(1/5000) 작성)

  • Lee, H.G.;Kim, D.K.;Bae, J.H.;Ha, T.H.;Jeong, S.H.;Choi, S.B.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.315-317
    • /
    • 1999
  • Soil resistivity has a relation with the corrosion of underground buried structures as a water pipeline, gas pipeline and power cable casing. And it's a main factor in the cathodic protection and earth design. This paper presents soil resistivity maps each depth through measuring the soil resistivity in Kwachon, Kyonggi province. Also examines the soil resistivity characteristics on a change of temperature, moisture content and ion content in the laboratory.

  • PDF

A Study on the Growth Characteristics of Multi-layer Planted Trees through Growth Analysis - With a Focus on Seoul Forest Park -

  • Kim, Han Soo;Ban, Soo Hong
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.2
    • /
    • pp.279-291
    • /
    • 2015
  • This study analyzed the growth characteristics of multi-layer planted trees through their growth analysis and attempted to present a management strategy. The subject of research is the Citizen's Forest Area of Seoul Forest Park located in Seoul City. Field surveys were conducted three times over eight years from 2005 when the Seoul Forest Park was created through 2013. Labels were attached to all trees in the target area, and their species, height and DBH were investigated. To identify the growth differences by trees in each area, a detailed tree location map was drawn up for use in the analysis. To check soil health, soil organic matter, soil pH and soil microbial activities were analyzed. It turned out that the growth of the multi-layer planted trees in the target area of research was higher than that of the trees in existing urban parks, and that it was similar to that of trees in natural forests. Through a field survey in the area with a remarkably low growth, high-density planting problem, soil was found to have excess-moisture and there was the problem of Pueraria lobata covering. As a result of the analysis of the soil, it was found that its organic content in the soil was lower; soil pH was higher; and microbial activities in the soil were lower when compared to that of natural forests.

Development of a Cell-based Long-term Hydrologic Model Using Geographic Information System(II) - Pre and Post Processor Development - (지리정보시스템을 이용한 장기유출모형의 개발(II) -전.후처리 시스템 개발-)

  • 최진용;정하우;김대식
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.2
    • /
    • pp.103-112
    • /
    • 1997
  • A CELTHYM(CEll-based Long-term HYdrologic Model), a pre-processor and a post-processor that can he integrated with geographic information system(GIS) were developed to predict the stream flow of a small agricultural watershed. Three kinds of routines, that are watershed boundary extraction routine(WBER), curve number calculation routine(CNR) and maximum available soil moisture calculation routine(MASR) composed pre-processor that was nicely interfaced with CELTRYM and GIS. Two kinds of routines, grapher and map composer composed post-processor that was well adapted CELTHYM output to chart making and GIS map making. The developed pre-post processor was useful for the GIS integration and spatial comprehension of the CELTHYM output.

  • PDF

Application of Grid-based Kinematic Wave Storm Runoff Model

  • Kim, Seong-Joon;Kim, Sun-Joo;Chae, Hyo-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.S1
    • /
    • pp.20-27
    • /
    • 2000
  • The grid-based KIneMatic wave STOrm Runoff Model(Kim, 1998; Kim, et al., 1998) which predicts temporal variation and spatial distribution of saturated overland flow, subsurface flow and stream flow was evaluated at two watersheds. this model adopts the single overland flowpath algorithm and simulates surface and/or subsurface water depth at each cell by using water balance of hydrologic components. the model programmed by C-language uses ASCII-formatted map data supported by the irregular gridded map of the GRASS (Geographic Resources Analysis Support System) GIS and generates the spatial distribution maps of discharge, flow depth and soil moisture of the watershed.

  • PDF

APPLICATION OF GRID-BASED KINEMATIC WAVE STORM RUNOFF MODEL(KIMSTORM)

  • Kim, Seong-Joon;Kim, Sun-Joo;Chae, Hyo-Sok
    • Water Engineering Research
    • /
    • v.1 no.4
    • /
    • pp.321-330
    • /
    • 2000
  • The grid-based KIneMatic wave STOrm Runoff Model(Kim, 1998; Kim, et al., 1998) which predicts temporal variation and spatial distribution of overland flow, subsurface flow and stream flow was evaluated at two watersheds. This model adopts the single overland flowpath algorithm and simulates surface and/or subsurface water depth at each cell by using water balance of hydrologic components. The model programmed by C-language uses ASCII-formatted map data supported by the irregular gridded map of the GRASS(Geographic Resources Analysis Support System) GIS and generates the spatial distribution maps of discharge, flow depth and soil moisture of the watershed.

  • PDF