• Title/Summary/Keyword: Soil mixture ratio

Search Result 266, Processing Time 0.024 seconds

Effects of fines content on void ratio, compressibility, and static liquefaction of silty sand

  • Lade, Poul V.;Yamamuro, Jerry A.;Liggio, Carl D. Jr.
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-15
    • /
    • 2009
  • Many aspects of the behavior of sands are affected by the content of non-plastic fine particles and these various aspects should be included in a constitutive model for the soil behavior. The fines content affects maximum and minimum void ratios, compressibility, shear strength, and static liquefaction under undrained conditions. Twenty-eight undrained triaxial compression tests were performed on mixtures of sand and fine particles with fines contents of 0, 10, 20, 30, 50, 75, and 100% to study the effects of fines on void ratio, compressibility, and the occurrence of static liquefaction. The experiments were performed at low consolidation pressures at which liquefaction may occur in near-surface, natural deposits. The presence of fines creates a particle structure in the soil that is highly compressible, enhancing the potential for liquefaction, and the fines also alter the basic stress-strain and volume change behavior, which should be modeled to predict the occurrence of static liquefaction in the field. The void ratio at which liquefaction occurs for each sand/fines mixture was determined, and the variation of compressibility with void ratio was determined for each mixture. This allowed a relation to be determined between fines content, void ratio, compressibility, and the occurrence of static liquefaction. Such relations may vary from sand to sand, but the present results are believed to indicate the trend in such relations.

A Study on the Effects of Bituminous Material on Durability of Soil-Cement Mixtures (염청재료가 흙-시멘트의 강도 및 내구성에 끼치는 영향에 관한 연구)

  • 김종옥;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.1
    • /
    • pp.4599-4613
    • /
    • 1978
  • This study was intended to investigate the effects of bituminous material content of soil-cement mixtures on their durability. For the purpose, unconfined compressive strength test, Freeze-thaw test, and wet-dry test were performed with three types of soil. Each type of soil was mixed with three levels of cement content and each soil-cement mixture was mixed with four levels of bituminous material content. For the unconfined compressive strength test, Freeze-thaw test and wet-dry test, 324, 108, and 108-specimens were prepared respectively. Unconfined compressive strength was measured at age of 7-days, 14-days and 28-days using 108-specimens in each age. The soil-cement loss rate due to freeze-thaw and wet-dry were calculated after 12 cycles of test using 108-specimens in each test. The results are summarized as follows : 1. Optimum moisture content was increased with increase of cement content, but maximum dry density was changed irregulary with increase of the cement content. 2. The unconfined compressive strength was increased with increase of cement content, bituminous material content and curing age. Cement is more effective factor than bituminous material on unconfined compressive strength of soil-cement Mixture. 3. It is estimated as the most economical cement content that the recommended cement content of A.S.T.M. because increasing rate of unconfined compressive strength at age of 28-days was low when cement content is above the recommanded cement content of A.S.T.M. among all types of soil. 4. Although a portion of cement content is substituted for bituminous material, the necessary unconfined compressive strength can be obtained. 5. The soil-cement loss was more influenced by wet-dry than Freeze-thaw 6. The bituminous material is more effective on the decrease of soil-cement loss than increase of unconfined compressive strength 7. The void ratio of soil-cement mixture was changet irregularly with increase of cement content, but that was decreased in proportion to the increase of bituminous material content. 8. The regression equation between the unconfined compressive strength and soil-cement loss rate were obtained as table 7.

  • PDF

A Study on the Use of Fresh Root-chips in Slope Revegetation Works (비탈면 녹화에서 임목폐기물의 활용에 관한 연구)

  • Kim, Nam-Choon;Lee, Jung-Ho;Lee, Tae-Ok;Heo, Young-Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.4
    • /
    • pp.119-128
    • /
    • 2008
  • In this study, we attempted to seek out the ways to recycle fresh root-chips in the slope revegetation works by breaking tree root wastes occurring during the construction works, also to review the applicability of fresh root-chips as the soil media in slope revegetation works. For this purpose, we organized test units in order to investigate on-site applicability of fresh root-chips (broken chips). In order to examine the desirable ration of combining fresh root-chips with the hydroseeding soil media on the cutting slopes, we organized test units depending on the amount of combination. The following is the main experimental results. 1. At first, we analyzed properties of hrdro-seeding soil media and soil of the experimental sites. The overall results demonstrate that all the test units show proper range for vegetation. 2. We believe that the physical properties of soils in the earlier phase of restoration works on the sloped sites are not greatly affected by the fact whether broken chips exist or not. However, as time elapses, broken chips needs to be investigated further on what kind of impact they have on the soil condition. 3. More species are found in the test unit combining broken chips and we believe that it will contribute to blossoming of green plants and ecological succession of neighboring plants. 4. We performed experiment on possibility for fresh root-chips as substitutes for the hydro-seeding soil-media. In the test unit that combines fresh root-chips, its mixture ratio tends to exceed that of the test unit that does not combine fresh root-chips by 5 %. In case of the Thick-Layer-Soil-Media Hydroseeding works, the mixture ratio of the test unit that combines fresh root-chips after 16 weeks exceeds that of the test unit that does not combine fresh root-chips by 75%. 5. From the result of our experiment, it is obvious that the ratio of mixture and the number of emerging species are higher for the test unit combining fresh root-chips than the test unit that does not combine them. In other words, we can replace the hydro-seeding-soil-media with some Fresh root-chips without affecting the physical property of soil.

Studies on the Compressive Strength in Lime-Soil Mixtures -Influence of Lime-Content and Curing on Compressive Strength- (석회혼합토의 압축강도에 관한 연구 (제1보) -석회함량 및 갱생이 강도에 미치는 영향-)

  • 김성완
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.14 no.4
    • /
    • pp.2761-2769
    • /
    • 1972
  • The following results were obtained by the compression test of 3, 7, 14 and 28 days cured lime soil mixtures. The soil used in this test was clayey soil(sand : 20% silt : 45%, clay : 35%) and the rates of hydrated lime mixture for the dry weight of soil were 4, 8, 12, 19 and 20 percents. 1. The optimum moisture content increases and the maximum dry density decreases with the increase of the lime content. 2. The compacted moisture for the maximum strength in lime soil mixture increases with the increase of the lime content and the increase of curing periods. 3. The compressive strength increase of curing periods and its increasing ratio is largest at the 8 percent lime content. 4. The line content for the maximum strength decreases with increase of curing period and the largest strength shows at the 8 percent lime content when the curing period is over two weeks. 5. It seems to depend on the temperature effect that the compressive strength of lime soil mixtures cured in soil shows the lowest value. Accordingly, the effect of curing moisture does not influence to the strength of lime soil mixtures as much as the variation of curing temperature.

  • PDF

A Study on the Recycling of Coal Ash as Structural Backfill materials (구조물 뒷채움재로서의 석탄회 활용에 관한 연구)

  • 여유현
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.74-79
    • /
    • 2000
  • The purpose of this paper is to recycle coal ash as structural backfill materials from electric power plants. Two million tons of coal ash are produced annually. The laboratory test was executed for the basic compatibility as substitution for structural backfill materials and the optimal mixture ratio(fly ash : bottom ash) was decided. In addition the model test was performed using medium scale earth pressure model with small size earth pressure cells model box data logger and some other apparatuses. Mixed coal ash and excellent backfill materials(coheisonless soil SW) were compared in the view of lateral earth pressure variation depending on wall displacement. The reduction of earth pressure when coal ash was used as a bockfill material was monitored comparing to that of cohesionless soil. the cost and environmental pollutants by treating coal ash can be reduced through developing the recycling technology.

  • PDF

An experimental study for reducing frost susceptibility using granulated used-tire (폐타이어분말 혼합이 동상억제에 미치는 영향에 관한 실험적 연구)

  • Kim, Hak-Sam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.2
    • /
    • pp.147-154
    • /
    • 2006
  • The authors conducted field experiments of frost heave to evaluate a method for reducing frost susceptibility using granulated used-tire mixture for 3 winters. Qualitative analyses for the evaluation of restraint effect of frost susceptibility by utilizing granulated used-tire soil mixture were conducted with the segregation potential concept and frost heave ratio. By mixing soil with granulated tire, the frost susceptibility was decreased drastically. From the result of the analyses, it was confirmed that granulated tire is an excellent material in controlling the frost susceptibility.

  • PDF

Soil Physicochemical Properties by applied with Mixed Ratio Soldier Fly (Hermetia illucens) Casts (동애등애 분변토의 혼합비율에 따른 토양이화학적 특성)

  • Kim, Young-Sun;Lee, Sang-Beom;Ham, Suon-Kyu;Lim, Hye-Jung;Cboe, Young-Cheol
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.1
    • /
    • pp.106-111
    • /
    • 2011
  • This study was conducted to investigate the effect of the mixture ratio of a soldier fly casts (SFC), compost and cocopeat on the soil physicochemical properties. The mixture ratios of soil amendment were 0%, 3%, 5%, 7% and 10% (V/V) incorporated with sand which met to the USGA particle standard. To analyze the effects of amendments on soil chemical properties, pH and EC were measured. The porosity, capillary porosity, air-filled porosity, bulk density and hydraulic conductivity also measured to analyze the physical properties. Chemical properties were significantly different by mixture ratios of a SFC, compost and cocopeat. Capillary porosity was a factor involved in soil physical properties by blending with a SFC and compost. It was affected on the volume of porosity or hydraulic conductivity. To analyze the correlation of mixture ratio versus to physical characters, the ratios of SFC were significantly different in capillary porosity, air-filled porosity, and hydraulic conductivity. These results indicated that mixing ratios of SFC were affected on soil physicochemical properties such as porosity and hydraulic conductivity of the root zone on the USGA sand green.

A Study on Characteristics of Hydraulic Conductivity in the Soil-Bentonite Mixed Soils with Compaction Energy and Swelling in the Landfill (폐기물매립장에서 다짐에너지와 팽윤도에 의한 토양-벤토나이트 혼합토의 투수계수 특성에 관한 연구)

  • 이종민;이재영
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.61-72
    • /
    • 2001
  • A barrier liner system is placed at the bottom and side slope in landfill to protect a leaking of leachate that the hydraulic conductivity of this system should be less than It 107cm/sec. In this study, the soil-bentonite mixture for the bottom liner system was evaluated in two point of views : changing characteristics of the hydraulic conductivity according to the different mixing ratio of soil-bentonite with the effect of bentonite swelling and the difference method (A & D type) of compaction on the hydraulic conductivity. As the results, maximum dry density (${\gamma}$$_{dmax}$) of SC group mixture was higher than of CL group mixture. However, the result of optimum moisture contents(OMC) of both groups were the contrary. In case of ${\gamma}$$_{dmax}$ by different compaction method, D type was higher than A. But the OMC were the contrary. The difference of ${\gamma}$$_{dmax}$ according to the Compaction energy, “SC” group mixture W3S higher than the “CL” group. In case of OMC of “CL” group was higher than “SC” group. The effecting of swelling was a little bit different on the two factors. According to the result of compaction test, the use of site soil only could not meet the criteria on hydraulic conductivity, but could find a solution for the mixing ratio of bentonite mixture were satisfied to the standard of barriation. The increased in bentonite mixing ratio and degree of swelling, the values of hydraulic conductivity were decreased. Especially the “CL” group with “D” type compaction measured the lowest value with the same conditions. Also, the bentonite mixing ratio has more influenced on the hydraulic conductivity compare with swelling effect. The “SC” group mixture with “A” typo compaction got a big difference from others. The evaluation of economic for the construction cost on the two cases, the lower bentonite mixing ratio of soil-bentonite mixed soil is more economically because of bentonite cost.

  • PDF

Effect of Rice Bran and Wood Charcoal on Soil Properties and Yield of Continuous Cropping of Red Pepper

  • Won, J.G.;Jang, K.S.;Hwang, J.E.;Kwon, O.H.;Jeon, S.G.;Park, S.G.;Park, K.C.;Suh, Y.J.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.218-221
    • /
    • 2011
  • To improve the soil properties of physical and microbial community rice bran and wood charcoal were applied in the continuously cultivated plastic film house soil. Soil physical properties were improved by application of rice bran and charcoal compared to chemical fertilizer application (control) by 8~14% in bulk density and 5~9% in soil porosity. Changes in the biological ratio indexes of fatty acids in the soils were detected depending on the inputted materials. Especially in application of rice bran including mixture with charcoal, much more fungi and less bacteria were detected and the ratio of fungi to bacteria was increased, suggesting the more organic carbon metabolically active in these treatments. The high ratio of aerobe to anaerobe suggested the better aerobic conditions were in the soil inputted wood charcoal. From these results, it is important and possible to select some materials for the organic pepper cultivation, which may improve the poor condition soil.

A Study on Unsaturated Permeable Properties of the Soil-Bentonite Mixtures (Soil-Bentonite 혼합토의 불포화 투수특성 연구)

  • Kim Man-il
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.123-132
    • /
    • 2005
  • This study presents the results of a laboratory investigation performed to study physical properties of soil-bentonite mixtures through the vertical permeation test and dielectric measurement test using Frequency Domain Reflectometry system for the liner of waste landfill. For the laboratory experiments, geotechnical testing was conducted on pre-mixed soil-bentonite which is consisted of standard sand, weathered granite soil and bentonite for estimating physical parameters such as a volumetric water content, void ratio and dielectric constant. In experiment results, initial soil-bentonite mixing rate has an effect of change of volumetric water content. Also change of volumetric water content of a soil-bentonite mixture is clearly detected to measure a response of dielectric constant. In order to estimate an unsaturated permeable property of soil-bentonite mixtures, equations between volumetric water content and dielectric constant were derived from this study.