• Title/Summary/Keyword: Soil minerals

Search Result 413, Processing Time 0.021 seconds

Therapeutic Efficacy of Minerals Supplement in Macro-minerals Deficient Buffaloes and its Effect on Haematobiochemical Profile and Production

  • Sharma, M.C.;Joshi, Chinmay;Sarkar, T.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.9
    • /
    • pp.1278-1287
    • /
    • 2002
  • To record the prevalence of macro-minerals deficiency in buffaloes, a survey was conducted in certain parts of Northern India. The prevalence of soil Ca, P, Mg, Na, P and K deficiency was 21.35%, 23.30%, 28.64%, 3.61% and 6.84%, respectively while that of fodder Ca, P, Mg, Na and K deficiency was 13.88%, 16.55%, 19.72%, 3.54% and 4.86%, respectively. The overall prevalence of serum (buffalo) Ca, P, Mg, Na and K deficiency in certain parts of northern India was 25.48%, 24.66%, 24.36%, 4.42% and 3.28%, respectively. The correlation coefficient of Ca, P, Mg, Na and K in soil, fodder and serum was significant and in most of the cases the values were above 0.6. The highest deficiency of macro-minerals i.e. Ca, P, Mg, Na and K was found in plain regions, followed by Tarai (foot hill of Himalayas) region and finally the hilly region. For therapeutic studies, three types of mineral mixture were prepared according to deficiency obtained and fed to three groups of deficient animals. Observations were recorded on 0, 30, 60 and 75 day. In group A animals normal mineral mixture was provided, where as in group C and D 10% and 25% more of Ca, P, Mg were provided, respectively. There was an increase in body weight, milk yield, haemoglobin concentration, and total erythrocyte count. Alanine aminotransferase, aspartate amino transferase in group D animals. There was a decrease in heart rate, respiratory rate and alkaline phosphatase in group D animal after mineral supplement. Thus showing the efficacy when supplements 3 provided to group D animals.

The Surface Properties of Major Clayminerals Produced in Korea (한국산 우량점토광물(優良粘土鑛物)의 표면특성(表面特性))

  • Choi, Jyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.3
    • /
    • pp.195-203
    • /
    • 1986
  • This study was conducted to investigate the characteristics of surface charge of major clay minerals in Korea. The charge characteristics of clay minerals were studied by measuring the retention of $NH^+_4$, $Ca^{2+}$ and $Cl^-$ as a function of ionic strength. The dominant clay minerals of Zeolite, Bentonite and Kaolin were oriented as Clinoptilolite+Mordenite, Montmorillonite and Halloysite, respectively. At the same ionic strength, Montmorillonite and Halloysite adsorbed some more $Ca^{2+}$ than $NH^+_4$, whereas Zeolite adsorbed more $NH^+_4$ than $Ca^{2+}$. All the three minerals adsorbed more ions with higher ionic strength and the C.F.C was larger in the order of Halloysite < Montmorillonite < Zeolite. Since the total surface area by EGME rentention was shown to be in the order of Halloysite < Zeolite < Montmorillonite, therefore, the charge density was calculated to be in the order of Montmorillonite < Halloysite < Zeolite.

  • PDF

Genesis and Characteristics of the Soil Clay Minerals Derived from Major Parent Rocks in Korea -III. Soil Mineralogy of Sand and Silt Size Fractions in the Soils (한국(韓國)의 주요(主要) 모암(母岩)에서 발달(發達)된 토양점토광물(土壤粘土鑛物)의 특성(特性)과 생성학적(生成學的) 연구(硏究) -III. 모래와 미사중(微砂中)에 토양광물(土壤鑛物)의 특성비교(特性比較))

  • Um, Myung-Ho;Um, Ki-Tae;Lim, Hyung-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 1992
  • Sand and silt size fractions of soils which were derived from five major rocks of granite, granite-geniss, limestone, shale, and basalt in Korea were studied. Determination of the mineralogical and chemical composition of rock-forming mineral breakdown which is accompanied by the formation of secondary minerals. The chemical composition of the fraction was largely changed with the content of weatherable and resistant soil minerals such as ferromagenesian minerals, carbonates, and guartz. In the sand fractions of the soils from the granite and granite-gneiss, chlorite-vermiculite mixed layers seem to be an intermediate weathering product prior to the weathering state of the formation of vermiculite from chlorite. Kaolin minerals in the silt fractions of the soils from the granite-gneiss are considered to be formed by the pseudomorphic transformation of plagioclase. In the sand and silt fractions of the soils derived from the limestone, large amount of calcite and dolomite seems to have been inherited from the parent rocks. The primary chloritc, micas, and feldspars are considered to be formed from the weathering remains after leaching of carbonate minerals during the soil formation. In the residual soils(Gueom series) developed from the basalt, quartz and micas were coexisted with plagioclase and augite inherited from the parent rock.

  • PDF

인산염을 이용한 납오염 토양 고정화 반응의 가속화

  • 이의상;이상봉;이인원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.201-204
    • /
    • 2004
  • Immobilization is seen as a promising technology for lead remediation. In a laboratory experiment, immobilization of lead with soluble P was tested as a function of reaction time and P concentration. The P treated with an acidic solution to enhance heavy metal immobilization was worked into the soil, and within 7 days, lead was stabilized. Different molar ratios of soluble phosphates (super-phosphate and KH$_2$PO$_4$) would be considerably effective to accelerate the formation of highly insoluble minerals due to the lack of leachable Pb in the contaminated soil. Although it was demonstrated that the addition of soluble phosphates with an acidic solution significantly reduced available lead in soil up to over 95%, remaining phosphorus in soil matrix might cause a possible groundwater eutrophication in the near future.

  • PDF

Engineering properties of expansive clayey soil stabilized with lime and perlite

  • Calik, Umit;Sadoglu, Erol
    • Geomechanics and Engineering
    • /
    • v.6 no.4
    • /
    • pp.403-418
    • /
    • 2014
  • There are around 6700 millions tons of perlite reserves in the world. Although perlite possesses pozzolanic properties, it has not been so far used in soil stabilization. In this study, stabilization with perlite and lime of an expansive clayey soil containing smectite group clay minerals such as montmorillonite and nontronite was investigated experimentally. For this purpose, test mixtures were prepared with 8% of lime (optimum lime ratio of the soil) and without lime by adding 0%, 10%, 20%, 30%, 40% and 50% of perlite. Geotechnical properties such as compaction, Atterberg limits, swelling, unconfined compressive strength of the mixtures and changes of these properties depending on perlite ratio and time were determined. The test results show that stabilization of the soil with combination of perlite and lime improves the geotechnical properties better than those of perlite or lime alone. This experimental study unveils that the mixture containing 30% perlite and 8% lime is the optimum solution in stabilization of the soil with respect to strength.

동전기-펜턴 토양정화공정에서 공정변수에 따른 분해성능 비교

  • 양지원;박지연;김상준;이유진
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.239-242
    • /
    • 2002
  • Removal of phenanthrene by electrokinetic (EK) method combined with Fenton-like process was studied in a model system. Sand and phenanthrene were selected as a model soil and a representative PAH. Sand was contaminated at the concentration of 500 mg phenanthrene/kg dry sand. Bentonite and kaolinite were inserted into the space between reservoir and contaminated soil. When hydrogen peroxide supplied to a soil system from the anode reservoir was transported through the soil by EK process, the Fenton-like reaction was occurred by naturally existing iron minerals in soil. When hydrogen peroxide was supplied into the system, it showed higher removal efficiency than when just water was used. Maximum removal efficiency of phenanthrene was 81.2 % for 7 days.

  • PDF

Effect of Inorganic Cementing Agents on Soil Aggregate Formation in Reclaimed Tidelands (무기 결합재의 처리가 간척지 토양의 입단형성에 끼치는 영향)

  • Son, Jae-Gwon;Choi, Jin-Kyu;Cho, Jae-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.4
    • /
    • pp.43-47
    • /
    • 2009
  • Soil aggregation is an important part of influencing the soil behaviors in reducing rainfall-runoff and soil erosion, aeration, infiltration, and root penetration. Some inorganic materials such as clay minerals, Fe and Al oxides/hydroxides, and calcium carbonate can act as cementing agents within macroaggregates. The objective of this study was to determine the effects of different cementing agents (Fe, Mn, and Al) on soil aggregate formation in reclaimed tidelands. Water stable aggregate ratio and MWD (mean weight diameter) were higher in iron dioxides treatment than two other treatments. This result indicates significant correlation between soil aggregate formation and iron dioxides.

A Study on Soil Clay Minerals and the Distribution of Heavy Metals in Soils Derived from Black Shale and Black Slate in Dukpyoung Area (충북 괴산 덕평리 일대 흑색셰일 및 흑색점판암기원 토양의 점토광물 조성 및 중금속원소의 분산)

  • Chon, Chul-Min;Moon, Hi-Soo;Choi, Sun Kyung;Woo, Nam Chil
    • Economic and Environmental Geology
    • /
    • v.30 no.6
    • /
    • pp.567-586
    • /
    • 1997
  • Concentrations of several heavy metals in soils derived from black shale and slate have been reported to be higher than the average concentrations in non-polluted soils. This study describes and characterizes soil minerals, and investigates the distribution of heavy metals in soils, and then examines their relationship. Soils in the study area are mainly consist of guartz and feldspars with minor amount of kaolin, illite, vermiculite, chlorite and illite-vermiculite interstratified minerals. Mineral compositions are similar in mountain-, farmland-, and paddy-soils. The residual soils derived from sandy phyllites contain less illites than those from black shale and black slate. Heavy metals appear to be more concentrated in soils than in rocks. The concentrate ratios in soils to rocks ranges 1.1 times for Cr, 2 for Cu, 1.4 for Ni. The contour maps of Cd, Zn, Pb, Cu contents using 0.43N $HNO_3$-extraction imply that these elements are highly concentrated in the soils near the past uranium exploration region, coal seams, black slate beds and tailings than other parts of the study area. The proportions of the day in most soils are less than 10%. In spite of small proportions of the clay, the concentrations of heavy metals from clay fractions to the total concentrations are high: 1~2.4 times for Co, 1.4~2.5 for Cu, 1.2~2.6 for Ni, 1~5 for Pb, 1~2.7 for Zn and 1.6~1.8 for Cr and V. The contents of organic carbons in clay fractions are also 1.5~3.9 times higher than in silt and sand fractions. Cu, Pb and organic carbons show positive relationship in all size fractions. In the size-fractionated soil profile samples, the contents of heavy metals and organic carbons show analogous trends with depth. For the clay fractions of soil profile samples, the contents of heavy metals with depth have analogous trends to abundances of vermiculites, which have the high CEC in main clay minerals.

  • PDF

Hydrogeochemical Research on the Characteristic of Chemical Weathering in a Granitic Gatchment (水文化學的 資料를 통한 花崗岩質 流域의 化學的 風化特性에 關한 硏究)

  • Park, Soo-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.1
    • /
    • pp.1-15
    • /
    • 1993
  • This research aims to investigate some respects of chemical weathering processes, espcially the amount of solute leaching, formation of clay minerals, and the chemical weathering rate of granite rocks under present climatic conditions. For this purpose, I investigated geochemical mass balance in a small catchment and the mineralogical composition of weathered bedrocks including clay mineral assemblages at four res-pective sites along one slope. The geochemical mass blance for major elements of rock forming minerals was calculated from precipitation and streamwater data which are measured every week for one year. The study area is a climatically and litholo-gically homogeneous small catchment($3.62Km^2$)in Anyang-shi, Kyounggi-do, Korea. The be-drock of this area id Anyang Granite which is composed of coarse-giained, pink-colored miner-als. Main rock forming minerals are quartz, K-Feldspar, albite, and muscovite. One of the chracteristics of this granite rock is that its amount of Ca and Mg is much lower than other granite rock. The leaching pattern in the weathering profiles is in close reltion to the geochemical mass balance. Therefore the removal or accumulation of dissolved materials shows weathering patterns of granite in the Korean peninsula. Oversupplied ions into the drainage basin were $H^+$, $K^+$, Fe, and Mn, whereas $Na^2+$, $Mg^2+$, $Ca^2+$, Si, Al and $HCO-3^{-}$ were removed from the basin by the stream. The consumption of hydrogen ion in the catchment implies the hydrolysis of minerals. The surplus of $K^+$ reflects that vegetation is in the aggravation stage, and the nutrient cycle of the forest in study area did not reach a stable state. And it can be also presumed that the accumulation of $K^+$ in the top soil is related to the surplus of $K^+$. Oversupplied Fe and Mn were presumed to accumulate in soil by forming metallic oxide and hydroxide. In the opposite, the removal of $Na^+$, Si, Al resulted from the chemical weathering of albite and biotite, and the amount of removal of $Na^+$, Si, Al reflected the weathering rate of the bedrock. But $Ca^2+$ and $Mg^2+$ in stream water were contaminated by the scattered calcareous structures over the surface. Kaolinite is a stable clay mineral under the present environment by the thermodynamical analysis of the hydrogeochemical data and Tardy's Re value. But this result was quite different from the real assemblage of clay miner-als in soil and weathered bedrock. This differ-ence can be explained by the microenvironment in the weathering profile and the seasonal variation of climatic factors. There are different clay forming environments in the stydy area and these differences originate from the seasonal variation of climate, especially the flushing rate in the weathering profile. As it can be known from the results of the analysis of thermodynamic stability and characteristics of geochemical mas balance, the climate during winter and fall, when it is characterized by the low flushing rate and high solute influx, shows the environmental characteristics to from 2:1 clay minerals, such as illite, smectite, vermiculite and mixed layer clay minerals which are formed by neoformation or transformation from the primary or secondary minerals. During the summer and spring periods, kaoli-nite is a stable forming mineral. However it should consider that the other clay minerals can transformed into kaolinite or other clay minerals, because these periods have a high flushing rte and temperature. Materials which are directly regulated by chemical weathering in the weathered bedrock are $Na^+$, Si, and Al. The leaching of Al is, however, highly restricted and used to form a clay mineral, and that of Si falls under the same category. $Na^+$ is not taked up by growing veget ation, and fixed in the weathering profile by forming secondary minerals. Therefore the budget of $Na^+$ is a good indicator for the chemical weathering rate in the study area. The amount of chemical weathering of granite rocks was about 31.31g/$m^2+$/year based on $Na^+$ estimation.

  • PDF

Genesis and Characteristics of the Soil Clay Minerals Derived from Major Parent Rocks in Korea IV. Genesis and Distribution of the Soil Clay Minerals (한국(韓國)의 주요(主要) 모암(母岩)에서 발달(發達)된 토양점토광물(土壤粘土鑛物)의 특성(特性)과 생성학적(生成學的) 연구(硏究) IV. 토양점토광물(土壤粘土鑛物)의 분포(分布) 및 생성(生成))

  • Um, Myung-Ho;Lim, Hyung-Sik;Kim, Tai-Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.3
    • /
    • pp.202-212
    • /
    • 1992
  • This study reports on the genesis and mineralogical characteristics of the clay minerals in the soils derived from the five major parent rocks of granite, granite-gneiss, limestone, shale, and basalt in Korea. The investigation on the mineralogical aspects of primary and secondary minerals of the rocks and coarse fractions in the soils have been already reported. In this report, the identification of clay minerals in the soil clay fractions was done through the analyses of chemical, X-ray diffraction, and thermal methods. The studies showed clearly that much of the clay minerals was evolved by the weathering of primary minerals and some were further developed by the transformation of secondary minerals. Cation exchange capacity(CEC) of the clay fractions increased with higher amotunts of vermiculite, chlorite, and illite, however, decreased with higher hydroxy octahedral sheet within the interlayer spaces of vermiculite even if dominant clay with vermiculite. Feldspars in the granite and granite-gneiss might be completely transformed to kaolin mineral, Illite, chlolrite, and vermiculite formed by the alteration of micas, amphibole, augite, and primary chlorile seem to be subsequently transformed to the mixed layer minerals such as illite/vermiculite, illite/chlorite, and chlorite/vermiculite. These weathering products may be ultimately transformed into kaolin minerals. The smectite minerals in the clay fractions of the soils developed on the limestone are considerably present and they seem to be formed directly by the precipitation from high Mg solution and/or by the transformation of vermiculite from micas and chlorite in the parent materials. Abundant presence of illite in the soil clays developed on the shale is considered to have inherited from the fine particles and more resistant hydrous muscovite. The weathering sequences of the hydrous muscovite were as follows according to the degree of soil development ; hydrous muscovite ${\rightarrow}$ illite/vermiculite mixed layer(Inceptisols, Daegu series) and hydrous muscovite ${\rightarrow}$ illite/vermiculite mixed layer ${\rightarrow}$ vermiculite ${\rightarrow}$ kaolin mineral(Alfisols, Buyeo series). The plagioclase in the basalt might be mostly weathered to kaolin minerais. The augite in the basalt is likely to be transformed through progressive stage of weathering, augite ${\rightarrow}$ chlorite ${\rightarrow}$ chlorote/vermiculite mixed layer ${\rightarrow}$ vermiculite ${\rightarrow}$ kaolin. Another weathering sequence of augite could be expected, augite ${\rightarrow}$ chlorite ${\rightarrow}$ illite by the presence of illite and illite/vermiculite mixed layer in the clay fractions. Vermiculite and gibbsite were quantified from thermogravimetry(TG) and kaolin minerals, from both TG and differerential thermal analysis (DTA). Vermiculite in Jangseong series from the limestone was the dominant clay mineral of 21.7 percent and had a range in the order of 9.2 percent in Buyeo series to 5.4 percent in Daegu series from the shale. The rest soils ranged from 8.8 to 28.3 percent. Kaolin minerals were the dominant clay mineral of 32.7 percent in Asan series from the granite-gneiss and Gueom series of 32.0 percent from the basalt. The soils from the limestone ranged from 9.4 to 14.9 percent. The rest soils ranged from 8.9 to 28.6 percent. Gibbsite were 3.9 and 2.3 percent for Weoljeong and Chahang series from the granite, respectively. In Asan and Cheongsan series from the giranite-gneiss were 1.4 and 4.5 percent, respectively, and 3.6 percent in Jangpa series from the basalt.

  • PDF