• Title/Summary/Keyword: Soil microorganism

Search Result 411, Processing Time 0.039 seconds

Isolation of a Malonate-utilixing Acinetobacter calcoaceticus from Soil (토양으로부터 Malonate를 이용하는 Acinetobacter calcoaceticus의 분리)

  • 김성준;김유삼
    • Korean Journal of Microbiology
    • /
    • v.23 no.3
    • /
    • pp.230-234
    • /
    • 1985
  • A bacterium which can utilize malonate as a sole carbon source was isolated from soil. This strain was identified to be Acinetobacter calcoaceticus by morphological, cultural, phtsiological and biochemical examination. When this microorganism was grown on malonate as a aole carbon source, the enzymes, such as malonyl-CoA synthetase, isocitrate lyase and malate synthase were induced. These results suggest that in this microorganism, malonate is also assimilated through the proposed pathway in Pseudomonas fluorescens: $malonate{\rightarrow}malonyl-CoA{\rightarrow}acetyl-CoA{\rightarrow}glyoxylate\;cycle$.

  • PDF

Field Applicability Evaluation Using Effective Microorganism Brewing Cycle for Contaminated Soil in Water Retention Basin (복합발효미생물을 이용한 하천유수지 오염토의 현장적용성 평가)

  • Shin, Eunchul;Jung, Minkyo;Kim, Kyeongsig;Kang, Jeongku
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.11
    • /
    • pp.35-43
    • /
    • 2016
  • In this study, by using a Effective Microorganisms Brewing Cycle, it confirmed the purification effect of pollutants that are adsorbed on the basins stench removal and retarding soil. On the basis of on-site application test, a soil decontamination system will be suggested. Using a Effective Microorganisms Brewing Cycle, the odor concentration is reduced 2.5 times than that of natural purification treatment method. It was measured and found that the quality of the pore water discharged from the soil is improved. In addition, it was found that a composite of copper and lead with the fermentation microorganisms adsorbed on soil particles from the surface of the stirred experiments lagoon mixed soil is reduced to 65% and 66%, respectively, The TPH organic component was confirmed that the reduction effect of 85%. Restoration of reservoir contaminated soils using the effective microorganism brewing cycle needs to be more developed and implemented as a long-term purification system. This study may be a good reference of developing more complete microorganism brewing system which will efficiently reduce the odor and soil contamination based on optimal stirring and mixing ratio of the compound solutions and contaminated soils in reservoir.

Biodegradation of JP-8 in soil column by Rhodococcus fascians isolated from petroleum contaminated soil (유류 오염 토양에서 분리된 Rhodococcus fascians 를 이용한 토양 column에서의 JP-8의 분해)

  • Park, Bong-Je;Noh, Yong-Ho;Yun, Hyun-Shik
    • KSBB Journal
    • /
    • v.23 no.6
    • /
    • pp.479-483
    • /
    • 2008
  • The environmental contamination by organic pollutants is a widespread problem. The most widely distributed pollution can be attributed to oil contamination. Bioremediation, the use of microorganism or microbial processes to degrade environmental contaminant, is one of the new technologies. The objective of the present study is to study the degradation of JP-8 in soil by microorganism. The degradation of JP-8 was analysed by TPH using gas chromatography. Rhodococcus fascians isolated from the petroleum contaminated site was applied for the degradation of JP-8 in the soil column system. Air flow rate of 30 ml/min was sufficient to degrade JP-8 in the soil column as much as 70% of JP-8 in the soil column. The addition of nitrogen source resulted in the increase in JP-8 degradability to 75% of JP-8 and the C:N ratio for JP-8 degradation was 100:10.

Effects of Experimental Drought on Soil Bacterial Community in a Larix Kaempferi Stand

  • Kim, Beomjeong;Choi, Byoungkoo
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.3
    • /
    • pp.258-261
    • /
    • 2018
  • Drought alters soil microorganisms; however, it is still not clear how soil microbes respond to severe drought conditions. In this study, the responses of soil bacterial community to experimental drought in a coniferous stand were examined. Six $6m{\times}6m$ plots with three replicates of control and drought treatments were delimited. PCR amplification and Illumina sequencing were conducted for cluster analysis of soil bacterial community and species richness and species diversity was analyzed. Along the 393 days of simulated drought from July 2016 to October 2017, soil bacterial species diversity slightly increased whereas species richness decreased in both control and roof plots. Moreover, soil bacterial species richness more decreased in roof plots than in controls. Combining these results, soil bacterial activity might have been altered by simulated drought.

The Composting Techniques for On-site Recycling of Wood Waste (임목폐기물의 현장 재활용을 위한 퇴비화기술)

  • Hur, Young-Jin;Koh, Jeung-Hyun;Joo, Paik;Ahn, Tae-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.4
    • /
    • pp.72-80
    • /
    • 2009
  • The main purpose of this study is as follows : Finding a solution for fresh wood chips to be used as an alternative growing-media through a study of the formation method of a compost base that is applicable on both construction site and composting factory to ferment fresh wood chips produced from construction site as well as a study on adjuvant or secondary materials. The result from the experiment plot using wood chips sized 50mm or less, manure and fertilizer mixed manure as a source of nitrogen to compost fresh wood chips has shown that the temperatures 9days and 3days after the beginning of the experiment reached to $49.0^{\circ}C$ and $40.4^{\circ}C$ respectively, the heating duration was 7days and 4days respectively, and the C/N ratio was 26.5 and 25.3, each satisfying the standard for composted manure (25.0~40.0). Also, the other result from another experiment plot using mixture of sandy soil and microorganism as an inoculation source of microorganism has shown that the temperature 10days after the beginning of the experiment reached to $67.6^{\circ}C$ and lasted 16days. The experiment plot using sandy soil has shown the highest figure of $5.3{\sim}108$ CFU/g in terms of number of microorganism. The result from the experiment plots for on-site composting of fresh wood chips have shown that the experiment plot that used sandy soil with fertilizer due to supply restriction of manure as a nitrogen source in construction site reached the high temperature of $54.7^{\circ}C$ after 3days of experiment beginning and maintained heating state for 17days and reached 30.6 of C/N ratio, satisfying the standard for composted manure.

Releasing a Genetically Engineered Microorganism for Bioremediation

  • Sayler, Gary;Burlage, Robert;Cox, Chris;Nivens, David;Ripp, Steven;Ahn, Yeonghee;Easter, Jim;Wrner, Claudia;Jarrell, John
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.153-162
    • /
    • 2000
  • A field study was performed to test effectiveness of a bloluminescent genetically engineered microorganism (GEM) for bioremediation process monitoring and control. The study employed Pseudomonas fluorescens HK44 that was the first strain approved for field application in the U.S. for bioremediation purposes. HK44 contains lux gene fused within a naphthalene degradative pathway, allowing this GEM to bioluminesce as it degrades naphthalene as well as substituted naphthalenes and other polycyclic aromatic hydrocarbons (PAHs) , Results showed that HK44 was maintained in both PAH-contarninated and uncontaminated soils even 660 days after inoculation. HK44 was able to produce bioluminescence in response to PAHs in soil. Although effectiveness of chemical remediation was not assessed due to heterogeneous distribution of contaminants, decreased concentration of naphthalene was shown in the soils, Taken together, HK44 was useful for in situ bioremediation process monitoring and control. This work is so far the only field release of a GEM for bioremediation purposes.

  • PDF

Biological Control of Fusarium Wilt of Carnation Plants by Antagonistic Microorganism in Greenhouse (카네이션의 시설재배에서 길항성 세균을 이용한 Fusarium Wilt 의 생물학적 방제)

  • Cho, Jung-Il;Cho, Ja-Yong
    • Korean Journal of Organic Agriculture
    • /
    • v.12 no.2
    • /
    • pp.183-196
    • /
    • 2004
  • This study was carried out to screen and select the effects of antifungal bacterial strains which inhibit the growth of plant pathogen, Fusarium oxysporum(fusarium wilt) occurred in carnation plants in greenhouse. We isolated an effective bacterial strains and investigated into the antifungal activity of the antagonistic microorganism and it's identification. Twenty bacterial strains which strongly inhibited Fusarium oxysporum were isolated from roots of carnation plants and the soil in greenhouse, and the best antifungal bacteria designated as C121, was finally selected. Antagonistic bacterial strain, C121 was identified to be the genus Bacillus sp. based on the morphological, biochemical and cultural characterizations. The Bacillus sp. C121 showed 58.1% of antifungal activity against the growth of Fusarium oxysporum. By the bacterialization of the cultural broth and the heat bacterialization culture filtrate of it, Bacillus sp. C121 was shown 92.1% and 21.0% of antifungal activity, respectively.

  • PDF

A report of 10 unrecorded bacterial species of Korea, isolated from agricultural soil in 2022

  • Oung Bin Lim;Ji Soo Lee;Hyosun Lee;Ki Eun Lee;In Tae Cha;Won Jae Chi;Dong-Uk Kim
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.3
    • /
    • pp.215-222
    • /
    • 2023
  • In 2022, research for native prokaryotic species in Korea reported 10 unrecorded bacterial strains affiliated to phyla Actinomycetota, Bacillota, and Pseudomonadota. The strains formed monophyletic clades with the most closely related species (with ≥98.7% sequence similarity) in the 16S rRNA gene sequencing. Among them, four species of the phylum Actinomycetota, two species of the phylum Bacillota, and four species of the phylum Pseudomonadota have not been reported in Korea, suggesting unrecorded species in Korea. Information on strains such as Gram staining reaction, colony and cell morphology, biochemical characteristics, and isolation sources were provided in the species description.

Genetic Characterization of microorganism from Human Remains in the Joseon Period (조선 시대 인골로부터 분리한 미생물의 유전학적 특성연구 - 김포 장기지구 토광묘 출토 인골을 중심으로)

  • Cho, Eun-Min;Kang, So-yeong;Kwon, Eun-Sil;Jee, Sang-Hyun
    • 보존과학연구
    • /
    • s.31
    • /
    • pp.69-77
    • /
    • 2010
  • Preservation of artifacts that are excavated from archeological sites is closely related to soil environment. Biological remains are especially influenced by degradation activity of microorganism from soil environment. In this study a preserved human bone in archaeological tomb, Tou-kwang-myo from Joseon Period was analyzed to characterize bacteria groups by molecular genetic tools using 16S rDNA sequences. 117 clones were identified and classified 9 phylogenetic groups : ${\alpha}$-, ${\beta}$-, ${\gamma}$-, ${\delta}$-Proteobacteria, Sphingobacteria, Clostridia, Actinobacteridae, Nitrospiraceae, and Gemmatimonadetes according to homologous 16S rDNA sequences submitted in NCBI. ${\gamma}$-Proteobacteria group appears the highest ratio in bones (about 35%) while about 19.6% belong to the Actinobacteria group. The results may contribute to study on the effect of microorganisms on the human remains with burial method.

  • PDF

The Effect of Thatch Decomposing by Application with Composted Liquid Manure and Microorganism Medium in Golf Course Soil (배양미생물과 가축분뇨발효액비의 시비가 골프코스 토양 중 대취분해에 미치는 영향)

  • Ham, Suon Kyu;Lim, Ji Yeon;Lee, Yeong Min
    • Weed & Turfgrass Science
    • /
    • v.3 no.4
    • /
    • pp.342-346
    • /
    • 2014
  • The purpose of this experiment is for investigating how much the amino acid liquid fertilizer and composted liquid manure, culture microorganism effect on the breeding of grasses and knowing the extent of the thatch content through an analysis of the soil. For testing about soil chemical, the quality of grasses, and the extent of the thatch content in the soil, we cultivated 6 kinds of microorganisms having the effect of thatch dissolution and sprayed these 6 microorganisms with composted liquid manure and the amino acid liquid fertilizer on the place Creeping bentgrass have planted. This conduction started from June to October, 2012 and 2013 (The interval: 2 weeks). In the result of the turf growth, there is no big difference between soil chemical and trace element. And we can know Leaf Color Index, Chlorophyll Index and Root Length are almost same as among treatment. In conclusion, the mixing fertilization of culture microorganism and composted liquid manure is better effective than the traditional fertilization. And it can be expected the effect of the quality of grass and Thatch decomposition in soil.