• Title/Summary/Keyword: Soil microorganism

Search Result 412, Processing Time 0.024 seconds

Identification of Soil Actinomycetes Producing Anticancer Agent and Its Biological Activities (항암활성물질을 생산하는 토양방선균의 동정 및 함암물질의 생물학적 활성)

  • 박정민;문순옥;오두환
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.4
    • /
    • pp.347-352
    • /
    • 1994
  • Cytotoxic test was performed by SRB assay on human epidermoid carcinoma HEp-2 cell line for screening the soil microorganism, secreting anticancer agent. One microorganism was selected among two thousand microorganisms for its highest cytotoxicity. And this microorganism was identified with Streptomyces species after performing of diaminopimeric acid and reducing sugar analysis of cell wall and analysing the cultural characteristics and named Streptomyces sp. SM 1119. The effect of anticancer agent in SM 1119 culture extract on the cell cycle was studied by using GG$_{o}$ synchronized NIH 3T3 cells. The extract inhibited the serum stimulation of GG$_{o}$ NIH 3T3 cell only within 1 hour after serum stimulation but not after 6 hours. The extract also reduced the amount of c-myc mRNA in Colo 320 cell. These results suggest that the anticancer agent in the extract inhibits the progression of cell cycle very early stages, probably from G$_{0}$ to G$_{1}$.

  • PDF

Characteristics of Strength Change of Clay Mixing Eco-friendly Soil Binder and Microorganism (친환경 고결제와 미생물을 혼합한 점성토의 강도 변화특성)

  • Kim, Taeyeon;Park, Jongseo;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.10
    • /
    • pp.15-22
    • /
    • 2017
  • The soil improvement method so far has been developed with an emphasis on enhancing the strength of the ground. A soil improvement method using a excellent cementitious stabilizer in economical efficiency and handling property is mainly used. The soil improvement method using cementitious stabilizer is effective but environmental and human harmful substances are detected and environmental problems such as carbon dioxide emission and groundwater pollution are pointed out. Therefore, as part of an alternative method capable of solving such problems, researches on the soil improvement method incorporating biological technology are being actively carried out. This study was conducted to investigate the characteristics of strength change when mixed with environmentally friendly soil binder and microorganism in clay, and it was analyzed by uniaxial compression test, direct shear test, SEM, XRD. As a results of the test, we confirmed the cementation caused by microbially induced calcite precipitation and the strength increase enhancement by it.

Reduction of Hydraulic Conductivity by Soil Injection of Bacteria (Bacteria 토양주입을 통한 투수계수 감소)

  • 송영우;김건하;구동영
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.331-337
    • /
    • 2000
  • When microorganism is injected into porous medium such as soils, biomass retained in the pore. Bacteria within these microcolonies produced large amounts of exopolysaccharides and formed a plugging biofilm. Soil pore size and shape are varied from the initial condition as a result of biofilm formation, which make hydraulic conductivity reduced and friction rate between soil aggregates increased. In this research, hydraulic conductivity reduction was measured after microorganism are inoculated and cultured with synthetic substrate and nutrient. Also, pore sand of before and after biofilm formation compared with scanning electron microscopy. Hydraulic conductivity of Sand and Poorly Graded Sand was decreased approximately 1/10∼1/100 after biomass inoculation and cultivation. Biofilm attached on soil aggregates is resistant to acidic or basic condition.

  • PDF

Effect of Microorganism, Vitabio on Growth and Quality of Leaf Lettuce (Vitabio 土壤微生物劑 處理가 葉상치 收量 및 品贊에 미치는 영향)

  • Kim, Kyung-Je;Lee, Byung-Moo
    • Korean Journal of Organic Agriculture
    • /
    • v.12 no.3
    • /
    • pp.345-352
    • /
    • 2004
  • This study was carried out to investigate the effect of soil-born microorganism, vitabio on growth of leaf lettuce in the vinyl house. Total weights of leaf lettuce treated with vitabio showed difference compared with untreated leaf lettuce. Sugar content was also increased. Mineral contents of leaf lettuce showed no difference between treated with vitabio and untreated with vitabio. Exchange Capacity (EC) and Organic Matter (OM) in chemical properties of soil treated with vitabio showed higher than soil in untreated vitabio. Vitabio treated soil contained much more microorganisms such as Bacteria, Actinomycetes, Hyphomycetes, Bacillus sp. Pseudomonas sp. after harvest.

  • PDF

Simulative Study of Effects of LM Microorganism on Environment: Analyses of Metabolomes and Soil Microbial Communities (LM 미생물의 환경영향 모사: 대사체와 토양미생물군 분석)

  • Lee, Ji-Hoon;Ki, Min-Gyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.3
    • /
    • pp.197-204
    • /
    • 2019
  • BACKGROUND: Living modified microorganisms (LMMs) have been focused in two very different aspects of positive and negative effects on ecology and human health. As a model experiment, wild type and a foreign origin gene-harboring modified E. coli strains were subjected to comparison of their metabolomes and potential effects on soil microbiota in the laboratory sets. This study assumes the unintentional release of LMMs and tries to suggest potential effects on the soil microbiota even at minimal settings. METHODS AND RESULTS: Metabolomes from the wild type and LM E. coli were analyzed by NMR and the profiles were compared. In the laboratory soil experiments, the two types of E. coli were added to the soils and monitored for the bacterial community compositions. Those metabolomic profiles did not show significant differences. The microbial community structures from the time series soil DNAs for both the sets using wild type and LMO also did not indicate significant changes, but minor by the addition of foreign organisms regardless of wild or LMO. CONCLUSION: Even if the recombinant microorganism (LMO) is released into the soil environment, the survival of microorganisms in the environment would be one of the major factors for the transfers of foreign genes to other organisms and diffusion into the soil environment.

Effect of Microbial Treatment Methods on Biogrout (미생물 처리 방법이 바이오그라우트에 미치는 영향)

  • Kim, Daehyeon;Park, Kyungho;Kim, Hochul;Lee, Yonghee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.5
    • /
    • pp.51-57
    • /
    • 2012
  • The purpose of study is to understand the possibility of biogrout of soil induced by bacteria. Microbial Calcium Carbonate Precipitation(MCP) has been analysed using the microorganism Bacillus Pasteurii. In order to understand the biogrout of soft ground treated with microbial calcium carbonate precipitation, four types of specimens(sterilization soil, non-sterilization soil, reaction solution and microorganism solution with pre-treatment mix and reaction solution and microorganism solution with post-treatment mix) were made. Scanning Electron Microscope(SEM), EDX and X-ray diffraction(XRD) analyses were performed on the soft ground specimens. On the basis of the preliminary results, it appears that microbial treatment methods using calcium carbonate precipitation may be possible to improve property of biogrout.

Effect of Microbial Product on Microorganisms in Soil and the Growth of Leaf Lettuce (EM 활성액, 키토산 및 목초액 처리가 토양 미생물상의 변화 및 잎 상추의 생육에 미치는 영향)

  • Seok, Woon-Young;Oh, Ju-Sung;Kim, Doh-Hoon;Chung, Won-Bok;Jeong, Soon-Jae
    • Korean Journal of Organic Agriculture
    • /
    • v.12 no.4
    • /
    • pp.427-436
    • /
    • 2004
  • This study was conducted to investigate the effect of microbial product on microorganisms in soil and the growth of leaf lettuce. The test material were treated with chitosan, wood vinegar and EM activity liquid, and treatment concentration was 50 times solution and 100 times solution level with foliar application. The results were summarized as follows : Among foliar application of microorganisms treatments diluted by chitosan 100 times solution level was effective considering growth of leaf lettuce as compared other dilutions and control plot. Change of microorganism number in the soil for cultivation of chinese cabbages and leaf lettuce was increased with microorganism treatment plot as compared with control plot. Specially chitosan 100 times solution level showes the most significant effect.

  • PDF

Permeability Reduction of Soils by Biomass Injection (미생물 균체의 주입을 통한 토양의 투수계수 감소)

  • 송영우;김건하;구동영
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.273-283
    • /
    • 1999
  • When microorganism is injected into porous medium such as soils, biomass is retained in the pore. Soil pore size and shape are varied from the initial condition as a result of biofilm formation which makes hydraulic conductivity reduced and friction rate between soil aggregates increased. In this research, hydraulic conductivity reduction was measured after microorganism are inoculated and cultured with synthetic substrate and nutrient. In addition, this research evaluated the applicability of biomass-soil mixture to the field condition as an alternative cover material in landfill by measuring hydraulic conductivity change after repetitive freeze-thaw cycles. Hydraulic conductivity of silty soil decreased by approximately 1/50 after biomass inoculation and cultivation. Biofilm attached on soil aggregates is resistant to acidic or basic condition. After repetitive freeze-thaw cycles, however, hydraulic conductivity increase implies that biomass clogging can be impaired.

  • PDF

Detection of soil microorganisms of an upland or cultivated Codonopsis lanceolata and investigation of them affecting on flavor substances (산더덕과 재배더덕에 존재하는 토양미생물 및 향기 유발에 영향을 미치는 미생물 탐색)

  • 김동주;이진실;정가진;이세윤
    • Korean journal of food and cookery science
    • /
    • v.20 no.4
    • /
    • pp.418-422
    • /
    • 2004
  • We investigated microbial populations of an upland and cultivated Codonopsis lanceolata. The microbial populations from both types of soils were also investigated. There were more than 10 microorganisms existed in upland than cultivated one. The total viable cell counts of C. lanceolata from upland and cultivated one, especially in the upper zone, were 9.7x10$\^$6/ CFU/g and 4.2${\times}$10$\^$6/ CFU/g, respectively. As a results, upper parts of C. lanceolata in upland were considered to harbour approximately more than 2.3 fold higher microorganisms than in cultivated one. However, the total viable cell counts between the two soil habitat, that is, 1.2${\times}$10$\^$7/ CFU/g from upland and 1.0x10$\^$7/ CFU/g from cultivated, were not significantly different. We also examined the unique flavor producing microorganisms in the soil extract broth including 25% C. lanceolata extract. One microorganism was detected in upper pars of C. lanceolata and upland soil. No. 6, microorganism causing the characteristic flavor of C. lanceolata was continued as Actinomyces by microscopy.

Characterization of Soil Microorganism from Humus and Indigenous Microorganism Amendments

  • Jan, Umair;Feiwen, Rui;Masood, Jan;Chun, Se Chul
    • Mycobiology
    • /
    • v.48 no.5
    • /
    • pp.392-398
    • /
    • 2020
  • This study was conducted to understand the dynamics of microbial communities of soil microorganisms, and their distribution and abundance in the indigenous microorganisms (IMOs) manipulated from humus collected from the forest near the crop field. The soil microorganisms originated from humus and artificially cultured microbial-based soil amendments were characterized by molecular and biochemical analyses. The bacterial population (2 × 106~13 × 106 CFU/g sample) was approximately 100-fold abundant than the fungal population (2 × 104~8 × 104 CFU/g sample). The 16S rDNA and ITS sequence analyses showed that the bacterial and fungal communities in humus and IMOs were mainly composed of Bacillus and Pseudomonas, and Trichoderma and Aspergillus species, respectively. Some of the bacterial isolates from the humus and IMOs showed strong inhibitory activity against soil-borne pathogenic fungi Fusarium oxysporum and Sclerotinia sclerotiorum. These bacteria also showed the siderophore production activity as well as phosphate solubilizing activity, which are requisite traits for biological control of plant pathogenic fungi. These results suggest that humus and IMOs could be a useful resource for sustainable agriculture.