• Title/Summary/Keyword: Soil microorganism

Search Result 412, Processing Time 0.029 seconds

Studies on the Lipase Produced by Alkalophilic Microorganism (Alkalophilic microorganism이 생산하는 lipase에 관한 연구)

  • Jeong, Kwang-Seon;Ham, Cheol-Joo;Shin, Won-Cheol
    • Journal of Industrial Technology
    • /
    • v.7
    • /
    • pp.59-68
    • /
    • 1987
  • In order to obtain a strain of producing lipase which has resistance against alkaline and detergent, a screening test was carried out. Among 500 strains isolated from soil samples, the strain J-19 was selected for this study. The composition of the optimum medium for the highest lipase production was 2.0% glycerin, 1.0% corn steep liquor, 2.0% yeast extract, 0.1% $MgSO_4$ $7H_2O$, 0.2% $K_2HPO_4$, 1.5% soybean oil and 0.1% LAS(linear alkylbenzene sulfonate) with initial pH value of 10.0 and 3-day cultivation at $25^{\circ}C$. The lipase activity of the strain J-19 under optimal condition was 3.3. units/ml, which was increased about 1.3-fold than that of basal medium.

  • PDF

Biological Removal Phosphorus Containing Swine Wastewater (생물학적 처리에 의한 돈사폐수의 인제거)

  • 신남철;박정호
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.15-20
    • /
    • 2000
  • The studies of swine wastewater treatment aim to development of process using soil microorganism. Removal rate of swine wastewater containing organic matter was 99 percent in case of high loading rate. Microorganism was devoted to improve the treatment efficiency of the process. According to the result obtained from biological treatment of high loading rate swine wastewater. Hydraulic retention time was 2.3 days in unit process of biological phosphorus removal. BO $D_{rm}$ / $P_{rm}$ ratio was 1122 in room temperature anaerobic process and 355.6 in mesophilic anaerobic process. And then phosphorus removal rate mesophilic anaerobic process was 3 time as much as than room temperature acaerobic process.

  • PDF

Influence of soil organic matter and moisture on the persistence of the herbicide mefenacet in soils (제초제 Mefenacet의 토양 중 분해에 미치는 토양유기물과 토양수분에 의한 영향)

  • Kim, Sung-Min;Cho, Il-Kyu;Kyung, Kee-Sung;Lee, Jae-Koo
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.3
    • /
    • pp.182-187
    • /
    • 2003
  • In order to elucidate a degradation characteristics of herbicide mefenacet in soil, the persistence in soils was studied under laboratory conditions for $90\sim120$ days at $28^{\circ}C$. Mefenacet residues were determined from the two soils which pre-treated by sterilization and flooding, respectively. Non-sterilized upland soil was used as a control. When 70 days elapsed from application time, $55\sim63%$ of mefenacet applied were dissipated in control soils. However, $32\sim33%$ of mefenacet applied were dissipated in the sterilized soils and $33\sim35%$ was dissipated in the flooded soils. 까 lese results indicated that the degradation of mefenacet was assumed to be due to microorganism, especially aerobic microbes. In order to elucidate the influence of water content on the persistence of mefenacet in soil, water content in soils was adjusted to 20, 50, and 80% of the water-holding capacity(Field capacity, WHC). The half-life of mefenacet in soil containing 20% and 50% of WHC were 82 and 73 days, respectively, after incubation for 90 days. However, the half-life in soil containing 80% of WHC was shortened to 61 days. These results indicated that degradation of mefenacet in soil was influenced by the activity of soil microorganism, organic matter content and water content.

Impacts of Soil Microbial Populations on Soil Chemical and Biological Properties under Tropical Dry Evergreen Forest, Coromandel Coast, India

  • Sudhakaran, M.;Ramamoorthy, D.;Swamynathan, B.;Ramya, J.
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.4
    • /
    • pp.370-377
    • /
    • 2014
  • There are very few studies about soil chemical and biological properties under tropical dry evergreen forest Coromandel Coast, India. The present study was conducted in six tropical dry evergreen forests sites such as Oorani, Puthupet, Vadaagram, Kotthatai, Sendrakillai and Palvathunnan. We measured the quantity of soil chemical, biological properties and selected soil microorganisms for investigating the impacts of soil microbial populations on soil chemical and biological properties. The result showed that total N, P, Ca, S, Fe, Mn, Cu, Co, exchangeable K, Olson P, extractable Ca and phosphobacterial population were higher in the soil from Kothattai forest site. Organic carbon, total Mg, extractable Na, soil respiration, ${\beta}$-glucosidase activity, bacterial population, fungi population and actinomycetes population were higher in the soil from Palvathunn forest site. Total K, $NH_4{^+}$-N, $NO_3{^-}$-N, exchangeable K, extractable Ca, extractable Na, azotobacter population, bacillus population and rhizobacteria population were higher in the soil from Sendrakillai. Beijerinckia population, rhizobacteria and soluble sodium were higher in Puthupet forest soil. Total Si, total Na and exchangeable K were higher in soil from Oorani forest site. Total Mo and exchangeable K were higher in the soil from Vadaagaram forest site. The results showed that organic carbon, total N, $NH_4{^+}$-N, $NO_3{^-}$-N, extractable P, extractable Ca, soil respiration and ${\beta}$-glucosidase were significantly correlated with soil microbial populations. Therefore soil microorganisms are important factor for maintaining soil quality in tropical dry evergreen forest.

Vegetation Change after A Forest Fire in a Rural Japanese Red Pine Forest and Applications of Effective Microorganism (농촌 소나무림에서 산불에 의한 식생변화와 유용미생물의 적용)

  • Yeo, Ji Sean;Kim, Kee Dae
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.4
    • /
    • pp.46-56
    • /
    • 2008
  • This study examined the natural restoration of vegetation through monitoring of the development of a vegetation community from 2006 through 2007 after a forest fire. Approximately 5,000 $m^2$ in a forest near Topyeon-ri, Kangnae-myeon, Chungcheongbuk-do with Japanese red pine (Pinus densiflora) forest and its floor vegetation had been completely burned by a fire in April 2005. This area and another nearby Japanese red pine forest were selected as the experiment site and the control site, respectively. Vegetation survey was conducted at the experiment site and the control site. A seed bank experiment was carried out in the greenhouse to examine underground vegetation. Effective microorganism(EM) was applied to the seed bank experiment to estimate its effects on the direction of ecological succession. According to the results, a total of 36 plant species including shrub and herbaceous species were discovered in the experiment site. Quercus serrata, Lespedeza cyrtobotrya, and Castanea crenata, Rubus crataegifolius, Oplismenus undulatifolius, and Carex lanceolata were among the most abundant species. Biomass in the experiment site reached 2.4 times biomass than those in the control site, indicating the productivities of shrub and herbaceous layers are better in the experiment site. According to the result of the soil seed bank experiment of the experiment site, a total of 182 plants of 14 species were recorded. In addition, a total of 13 plants of 2 species were found from soil seed bank of the experiment site applied by EM. If EM is applied to the burned site, it will control the budding of herbaceous plants, creating the gap between herbaceous plants. This loss of competition is expected to help the restoration of trees in the burned area.

Effect of Chitosan, Wood Vinegar and EM on Microorganisms in Soil and Early Growth of Tomato (키토산, 목초액 및 EM 처리가 토양 미생물상의 변화 및 토마토의 초기생육에 미치는 영향)

  • Jeong, Soon-Jae;Oh, Ju-Sung;Seok, Woon-Young;Kim, Jeong-Han;Kim, Doh-Hoon;Chung, Won-Bok
    • Korean Journal of Organic Agriculture
    • /
    • v.14 no.4
    • /
    • pp.433-443
    • /
    • 2006
  • With treatment of Kitosan, Wood vinegear and EM(effective microoganism) which farmers call it as substance in fertilizing, conditioning and disease control substances, authors in vestigated on microorganisms change in soil and ealy growth characteristics of tomato. The results were summarized as follows: Among foliar application of kitosan, wood vinegear and EM(effective microoganism) treatments diluted by chitosan 500 times solution level was effective considering growth of tomato as compared other dilutions and control plot. Change of microorganism number in the soil for cultivation of tomato was increased with microorganism treatment plot as compared with control plot. Specially chitosan 500 times solution level showes the most significant effect.

  • PDF

Studies on the Isolation of Cholesterol Oxidase Producing Soil Microorganism and the Culture Condition for the roduction of High Activity Cholesterol Oxidase (Cholesterol Oxidase를 생성하는 토양 미생물의 분리 및 효소 생산에 관한 연구)

  • 이인애;최용경;이홍수;최인성;정태화
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.4
    • /
    • pp.395-400
    • /
    • 1992
  • A novel strain of HSL613 producing a large amount of cholesterol oxidase as an extra~ cellular enzyme was isolated from soil samples. Experiments were carried out to optimize the condition of cholesterol oxidase production using HSL613 strain. This microorganism was shown to give the maximum yield f)f cholesterol oxidase in the medium containing 2% glucose, 2% yeast extract, 0.2% $K_2HP0_4$, 0.1% NaCl. 0.005% $CaCl_22H_2O, 0.001% $FeSO_47H_20$. The optimum temperature was $30^{\circ}C$ and the enzyme production reached a maximum level at 144 hours of cultivation (10.3$\mu$/ml).

  • PDF

Biodegradation Study of Gasoline Oxygenates by Butane-Utilizing Microorganisms (부탄 분해 미생물을 이용한 휘발유 첨가제의 분해특성)

  • 장순웅
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.1
    • /
    • pp.27-34
    • /
    • 2003
  • In this study, potential degradation of MTBE and other gasoline oxygenates by pure culture ENV425 and mixed culture isolated from gasoline contaminated soil using butane as the sources of carbon and energy was examined and compared. Butane monooxygenases(BMO) of butane-grown ENV425 and mixed culture generated 1-butanol as a major metabolite of butane oxidation and addition of acetylene, specific inhibitor of monooxygenase, inhibited both butane oxidation and 1-butanol production. The results described in this study suggest that alkanes including propane, pentane, and butane are effectively utilized as a growth substrate to oxidize MTBE cometabolically. And also BTEX compounds could be the potential substrate of the MTBE cometabolism. Cell density also affected on the MTBE degradation and transformation capacity(Tc). Increasing cell density caused increasing MTBE degradation but decreased transformation capacity. Other result demonstrated that MTBE and other gasoline oxygenates, ETBE and TAME, were degraded by butane-grown microorganism.

Effects of radon on soil microbial community and their growth

  • Lee, Kyu-Yeon;Park, Seon-Yeong;Kim, Chang-Gyun
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • The aim of this study was to estimate the microbial metabolic activity of indigenous soil microbes under the radon exposure with different intensity and times in the secured laboratory radon chamber. For this purpose, the soil microbes were collected from radon-contaminated site located in the G county, Korea. Thereafter, their metabolic activity was determined after the radon exposure of varying radon concentrations of 185, 1,400 and 14,000 Bq/㎥. The average depth variable concentrations of soil radon in the radon-contaminated site were 707, 860 and 1,185 Bq/㎥ from 0, 15, and 30 cm in deep, respectively. Simultaneously, the soil microbial culture was mainly composed of Bacillus sp., Brevibacillus sp., Lysinibacillus sp., and Paenibacillus sp. From the radon exposure test, higher or lower radiation intensities compared to the threshold level attributed the metabolic activity of mixed microbial consortium to be reduced, whereas the moderate radiation intensity (i.e. threshold level) induced it to the pinnacle point. It was decided that radon radiation could instigate the microbial metabolic activity depending on the radon levels while they were exposed, which could consequently address that the certain extent of threshold concentration present in the ecosystem relevant to microbial diversity and population density to be more proliferated.

Penicillium from Rhizosphere Soil in Terrestrial and Coastal Environments in South Korea

  • Park, Myung Soo;Lee, Jun Won;Kim, Sung Hyun;Park, Ji-Hyun;You, Young-Hyun;Lim, Young Woon
    • Mycobiology
    • /
    • v.48 no.6
    • /
    • pp.431-442
    • /
    • 2020
  • Penicillium, the most common genus plays an important ecological role in various terrestrial and marine environments. However, only a few species have been reported from rhizosphere soil. As part of a project to excavate Korean indigenous fungi, we investigated rhizosphere soil of six plants in the forest (terrestrial habitat) and sand dunes (coastal habitat) and focused on discovering Penicillium species. A total of 64 strains were isolated and identified as 26 Penicillium species in nine sections based on morphological characteristics and the sequence analysis of β-tubulin and calmodulin. Although this is a small-scale study in a limited rhizosphere soil, eight unrecorded species and four potential new species have been identified. In addition, most Penicillium species from rhizosphere soil were unique to each plant. Penicillium halotolerans, P. scabrosum, P. samsonianum, P. jejuense, and P. janczewskii were commonly isolated from rhizosphere soil. Eight Penicillium species, P. aurantioviolaceum, P. bissettii, P. cairnsense, P. halotolerans, P. kananaskense, P. ortum, P. radiatolobatum, and P. verhagenii were recorded for the first time in Korea. Here, we provide the detailed morphological description of these unrecorded species.