• Title/Summary/Keyword: Soil microbial activity

Search Result 332, Processing Time 0.027 seconds

Effects of Soil Remediation Methods on the Biological Properties of Soils (오염토양 정화공법이 토양의 생물학적 특성에 미치는 영향)

  • Yi, Yongmin;Kim, Gukjin;Sung, Kijune
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.3
    • /
    • pp.73-81
    • /
    • 2013
  • Various remediation methods have been applied to clean soils contaminated with pollutants. They remove contaminants from the soils by utilizing physicochemical, biological, and thermal processes and can satisfy soil remediation standards within a limited time; however, they also have an effect on the biological functions of soils by changing soil properties. In this study, changes of the biological properties of soils before and after treatment with three frequently used remediation methods-soil washing, land farming, and thermal desorption-were monitored to investigate the effects of remediation methods on soil biological functions. Total microbial number and soil enzyme activities, germination rate and growth of Brassica juncea, biomass change of Eisenia andrei were examined the effects on soil microorganisms, plant, and soil organisms, respectively. After soil washing, the germination rate of Brassica juncea increased but the above-ground growth and total microbial number decreased. Dehydrogenase activity, germination rate and above-ground growth increased in both land farming and thermal desorption treated soil. Although the growth of Eisenia andrei in thermal desorption treated soil was higher than any other treatment, it was still lower than that in non-contaminated soil. These results show that the remediation processes used to clean contaminated soil also affect soil biological functions. To utilize the cleaned soil for healthy and more value-added purposes, soil improvement and process development are needed.

Relationship between Biodegradation of Biosynthetic Plastics, Poly-$\beta$-Hydroxybutyrate, and Soil Temperature (생합성 플라스틱 Poly-$\beta$-Hydroxybutyrate의 생분해와 토양온도의 관계)

  • 조강현;이혜미;조경숙
    • The Korean Journal of Ecology
    • /
    • v.21 no.3
    • /
    • pp.277-282
    • /
    • 1998
  • The microbial degradation of $poly-{\beta}-hydroxybutyrate$ (PHB) films was studied in soil microco는 incubated at a constant temperature of 2, 10, 20, 30 and $40^{\circ}C$ for up to 49 days. The degradation rate measured through loss of weight was enhanced by incubation at a higher temperature. At the soil temperature $40^{\circ}C$, $poly-{\beta}-hydroxybutyrate$ was rapidly degraded at a decay rate of 3.5% weight loss per day. The degradation of $poly-{\beta}-hydroxybutyrate$ did not affected significantly the chemical properties of soils such as pH and electric conductivity. However, microbial activity of soil in terms of dehydrogenase activity was increased by the degradation of $poly-{\beta}-hydroxybutyrate$.

  • PDF

Effects of Composts and Soil Amendments on Physicochemical Properties of Soils in Relation to Phytophthora Root and Crown Rot of Bell Pepper

  • Kim, Ki-Deok;Nemec, Stan;Musson, George
    • The Plant Pathology Journal
    • /
    • v.16 no.5
    • /
    • pp.283-285
    • /
    • 2000
  • Two field tests were conducted in 1995 to examine the effects of composts and soil amendments on physicochemical properties of soil in relation to Phytophthora root and crown rot of bell pepper. Chitosan, crab shell waste, humate, sewage sludge-yard trimmings, and wood chips were applied to test plots, some of which affected the levels of P, K, Mg, pH, and H. Physicochemical properties were not related with disease incidence, but percent organic matter, estimated nitrogen release, K, and Mg were correlated with total microbial activity. The elements K and Mg were especially responsible for the increased soil microbial activity that could affect development of root and crown rot of pepper.

  • PDF

Crop Effects on Soil Microorganism Activity and Community Composition in the Agricultural Environment (농경지에서 재배작물이 토양미생물활성 및 군집구성에 미치는 영향)

  • Bak, Gyeryeong;Lee, Jeong-Tae;Jee, Samnyu
    • Journal of Environmental Science International
    • /
    • v.30 no.5
    • /
    • pp.379-389
    • /
    • 2021
  • Soil microorganism activity in an agricultural field is affected by various factors including climate conditions, soil chemical properties, and crop cultivation. In this study, we elucidate the correlation between microorganism activity and agricultural environment factors using the dehydrogenase activity (DHA) value, which is one of the indicators of soil microbial activity. As a result, the various factors noted above were related to the DHA value. Annual rainfall, soil Mg2+, bacterial and fungal diversities, types of crops, developmental stages, seasons, and cultivation status were highly correlated with the DHA value. Furthermore, next-generation sequencing (NGS) analysis was used to identify that the type of crop affected soil microbial compositions of both bacteria and fungi. Soil used for soybean cultivation showed the highest relative abundance for Verrucomicrobia, Planctomycetes, and Acidobacteria but Actinobacteria and Firmicutes had the lowest relative abundance. In the case of soil used for potato cultivation, Actinobacteria had the highest relative abundance but Proteobacteria had the lowest relative abundance. Armatimonadetes showed the highest relative abundance in soil used for cabbage cultivation. Among the fungal communities, Mortierellomycota had the highest relative abundance for soybean cultivation but the lowest relative abundance for cabbage cultivation; further, Rozellomycota, Chytridiomycota, and Cercozoa had the highest relative abundance for cabbage cultivation. Basidiomycota had the highest relative abundance for potato cultivation but the lowest relative abundance for soybean cultivation.

Characterization of Soil Microorganism from Humus and Indigenous Microorganism Amendments

  • Jan, Umair;Feiwen, Rui;Masood, Jan;Chun, Se Chul
    • Mycobiology
    • /
    • v.48 no.5
    • /
    • pp.392-398
    • /
    • 2020
  • This study was conducted to understand the dynamics of microbial communities of soil microorganisms, and their distribution and abundance in the indigenous microorganisms (IMOs) manipulated from humus collected from the forest near the crop field. The soil microorganisms originated from humus and artificially cultured microbial-based soil amendments were characterized by molecular and biochemical analyses. The bacterial population (2 × 106~13 × 106 CFU/g sample) was approximately 100-fold abundant than the fungal population (2 × 104~8 × 104 CFU/g sample). The 16S rDNA and ITS sequence analyses showed that the bacterial and fungal communities in humus and IMOs were mainly composed of Bacillus and Pseudomonas, and Trichoderma and Aspergillus species, respectively. Some of the bacterial isolates from the humus and IMOs showed strong inhibitory activity against soil-borne pathogenic fungi Fusarium oxysporum and Sclerotinia sclerotiorum. These bacteria also showed the siderophore production activity as well as phosphate solubilizing activity, which are requisite traits for biological control of plant pathogenic fungi. These results suggest that humus and IMOs could be a useful resource for sustainable agriculture.

Studies on Antibiotic Producers of Korean Soil Microbes (IV) -Isolation and Antibiotic Activity of Streptomyces Strain DMC-42- (한국(韓國) 토양균(土壤菌)중 항생물질(抗生物質) 생성균(生成菌)에 관한 연구(硏究) 제 4 보(第4報) -스트렙토마이세스속(屬) 균주(菌株) DMC-42의 분리(分離) 및 그 항균작용(抗菌作用)-)

  • Kim, Hwa-Ki;Kim, Jung-Woo;Kim, Ha-Won;Choi, Eung-Chil;Kim, Byong-Kak
    • The Korean Journal of Mycology
    • /
    • v.13 no.2
    • /
    • pp.89-97
    • /
    • 1985
  • To find antibacterial strains of the soil microorganisms in Korea, they were isolated from the soil samples of different locations and screened for antibacterial activity against several standard microorganisms. An isolate among them had antibacterial activities against gram-positive and gram-negative bacteria. The examination of its morphological, biochemical, cultural and physiological characteristics according to the International Streptomyces Project methods showed that it belongs to the genus Streptomyces. This strain appears to be a novel strain when it was compared with those species of the genus which have been so far reported. The antibiotic metabolite was produced in the submerged culture of the strain. This metabolite was extracted from the culture filtrate and purified by ion-exchange column chromatography. Physico-chemical properties of the antibacterial metabolite were characterized.

  • PDF

The Study of Microbial Population & Dynamics in Hydrocarbon Contaminated Areas (유류오염지역의 미생물 분포 및 활성도에 관한 연구)

  • 김무훈;김순기;이원권;경우성;박덕신
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1999.10a
    • /
    • pp.28-31
    • /
    • 1999
  • The purpose of this study is to see the effect of microbial population and dynamics of the indigeonous microorganisms on hydrocarbon contaminated areas. The microbial structures and activities to determine the microbial capabilities of the contaminated sites are very important for the remedial action technology selection. Throughout microbial studies on different conditions by ETS(Electron Transport System) and microbial activity analysis, it was found that aeration and water contents are the most important factors in this site remediation. According to test results, Burkholderia spp. was dominant species, and acclimation is also an important factor for the accerelated biodegradation.

  • PDF

Investigation on Forest Soil Dynamics at Onsan Industrial Estate and Mt. Mani by the Assay of Dehydrogenase Activity, Denitrifying and Sulfur-Reducing Bacteria (탈수소효소(脫水素酵素), 탈질균(脫窒菌) 및 황산환원균(黃酸還元菌)의 정량(定量)을 통(通)한 온산공단(溫山工團)과 마니산(摩尼山) 산림토양(山林土壤)의 동태(動態) 조사(調査))

  • Park, Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.1
    • /
    • pp.106-112
    • /
    • 1998
  • This study was conducted to figure out the relationships among soil chemical properties and bacterial biomass related to denitrification and sulfur-reducing and the activity of dehydrogenase, and ultimately to consider the usefulness of dehydrogenase activity as a tool for evaluating the dynamics of forest soil ecosystem. Four sites were selected for the collection of soil samples within two regions(Onsan industrial estate as a polluted region and Mt. Mani at Kanghwa island as a clean area) with two forest types (coniferous and deciduous stands). The soils of Mt. Mani showed higher amount of organic matter, total nitrogen and available phosphorus than those collected from Onsan industrial estate, which indicated that the soils were more beneficial for microbial growth than those of Onsan. The dehydrogenase activity was more sensitive than the denitrifying bacteria or sulfur-reducing bacteria since the activity was significantly different between the regions and season while the two bacterial biomass were not significantly different between the two regions. In addition, the dehydrogenase activity showed relatively high correlation coefficients with organic matter(r=0.53, p=0.004), total nitrogen(r=0.41, p=0.008) and C/Ava. P-ratio(r=-0.52, p=0.001), which was thought to be closely related with microbial activity. Thus, the dehydrogenase activity was thought to be a useful index of soil ecosystem dynamics with considering that the technique need to be applied with the same soil texture for the comparison of the activity as other researchers indicated.

  • PDF

Influence of Growing Green Manures on Soil Microbial Activity and Diversity under Organically Managed Grape-greenhouse (시설 포도 유기농 재배지에서 녹비 생육 중 녹비 종류가 토양 미생물상에 미치는 영향)

  • Park, Kee-Choon;Seo, Young-Jin;Kim, Chan-Yong;Kim, Jong-Su;Yi, Young-Keun;Seo, Ji-Ae
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.3
    • /
    • pp.260-266
    • /
    • 2008
  • The aim of present work was to assess the response of soil microbial activity and diversity to green manures under the organically managed grape-greenhouse in early spring. Hairy vetch, milk vetch, and red clover were seeded in fall, and enzymatic activities by dehydrogenase and fluorescein diacetate (FDA) hydrolase, and microbial diversities by Biolog $EcoPlate^{TM}$ and phospholipid fatty acid (PLFA) were characterized for soils sampled in early spring. Dehydrogenase activity and FDA hydrolytic activity did not differentiate the green manures but the average well color development of Biolog EcoPlate was higher in soils covered with red clover than control soil. Soil microbial functional diversity by Biolog EcoPlate differentiated the soils covered with hairy vetch and milk vetch, and Shannon diversity index by Biolog EcoPlate was higher in soils covered with hairy vetch than control soil. Principal component analysis of PLFA differentiated the soils covered with milk vetch from control soil.

Effects of Pinus densiflora on soil chemical and microbial properties in Pb-contaminated forest soil

  • Kim, Sung-Hyun;Lee, In-Sook;Kang, Ho-Jeong
    • Journal of Ecology and Environment
    • /
    • v.34 no.3
    • /
    • pp.315-322
    • /
    • 2011
  • We investigated the effect of Pb uptake by Pinus densiflora and the Pb fraction in forest soil. We also investigated the change in soil physicochemical characteristics, microbial activity, and root exudates of Pinus densiflora in Pb-contaminated soils. Three-year-old pine seedlings were exposed to 500 mg/kg Pb for 12 months. The metal fractions were measured using sequential extraction procedures. Additionally, factors that affect solubility (three soil enzyme activities and amino acids of root exudate compounds) were also determined. The results showed that Pb contamination significantly decreased enzyme activities due to soil characteristics. In addition, organic matter, nitrate content, and Pb concentration were time dependent. The results indicate that changes in the Pb fraction affected Pb uptake by pine trees due to an increase in the exchangeable Pb fraction. The concentrations of organic acids were higher in Pb-spiked soil than those in control soil. Higher rhizosphere concentrations of oxalic acid resulted in increased Pb uptake from the soil. These results suggest that pine trees can change soil properties using root exudates due to differences in the metal fraction.