• Title/Summary/Keyword: Soil microbial activity

Search Result 332, Processing Time 0.024 seconds

Chitosanase를 생산 ${\cdot}$ 분비 하는 Bacillus sp. HSB-21의 분리 및 효소 특성

  • Kim, Seong-Gyun;Song, Hui-Sang;Kim, Dong-Seong;Sin, Jung-Han;Bang, Won-Gi;Choe, Yong-Bok
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.563-566
    • /
    • 2000
  • In order to obtain microbial endochitosanase for enzymatic production of chitooligosaccharides from chitosan, we screened four microbes from soil and selected. Bacillus sp. HSB-21 which showed highest activity. Chitosanase, produced from isolating microbe, was endo-type and molecular mass of the enzyme was estimated as 21,000 by active staining. Its optimum pH and temperature were 5.5 and $50^{\circ}C$, respectively. It was stable in the pH range of 3.0 to 8.0 and up to $40^{\circ}C$. It did not produce chitomonosaccharide and produced chitooligosaccharide ranging from chitobiose to chitooctaose as major end-products from chitosan. The chitosanase from Bacillus sp. HSB-21 can be applicable to enzymatic production of chitooligosaccharide which has high degree of polymerization .

  • PDF

DNA Toposiomerase I Inhibitor by Streptomyces sp. 7489 (방선균주 7489가 생산하는 DNA Topoisomerase I 저해제에 관한 연구)

  • Lee, Dong-Sun;Ha, Sang-Chul;Lee, Sang-Yong;Kim, Jong-Guk;Hong, Soon-Duck
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.1
    • /
    • pp.101-104
    • /
    • 1996
  • During the screening of inhibitor of DNA topoisomerase I from microbial secondary metabolites, Streptomyces melanosporofaciens 7489 which was capable of producing high level of inhibitor was selected from soil. The active compound (7489-1) was purified from the culture broth by solvent extraction, silica gel column chromatography and HPLC. The inhibitor was identified as dibutyl phthalate by spectroscopic methods of UV, $^{1}H$-NMR, $^{13}C$-NMR, DEPT and EI-MS. 7489-1 showed a strong inhibitory activity against topoisomerase I with 10 ${\mu}$M of $IC_{50}$ value.

  • PDF

Enhanced Natural Purification of Crude Oil Contaminated Tidal Flat (원유로 오염된 갯벌 지역의 자연정화 기능 향상 기술의 개발)

  • Kim, Young-A;Sung, Ki-June
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.5
    • /
    • pp.24-30
    • /
    • 2011
  • Tidal flats which are ecologically sensitive, are hard to remediate once they are contaminated by oil spill accidents. Traditional oil remediation measures focus on removal efficiency, and their improper implementation can adversely affect crude oil contaminated coastal areas and greatly disrupt the structure and functions of crude oil contaminated tidal flats. In this study, the oil degradation due to the implementation of remediation measures naturally enhanced using air and natural oil sorbents was evaluated in the lower strata of tidal flats. The effects of air and natural oil sorbents on oil degradation for two concentration levels (< 500 ppm and > 500 ppm) were tested at artificially contaminated tidal flats. Fifty days after these treatments, the natural oil sorbent treatment showed the lowest total petroleum hydrocarbon (TPH) concentration ($4.46{\pm}1.47%$) at the low concentration level, whereas both air and natural oil sorbent treatments showed high degradation efficiencies at the high concentration level ($29.30{\pm}4.39%$). Although the phosphatase activity decreased for all treatments, there was no significant difference between the decreases for the different treatments; on the other hand, B-glucosidase activities were high for both air and natural oil sorbent treatments. Although degradation efficiencies decreased as the concentration increased, the air provision and natural oil sorbent treatment could be an effective ecological restoration measure for oil contaminated tidal flats while minimizing the environmental impact of the remediation efforts.

Rhizoremdiation of Petroleum Hydrocarbon-contaminated Soils and Greenhouse Gas Emission Characteristics: A Review (유류오염토양 근권정화기술 동향 및 온실가스 배출 특성)

  • Seo, Yoonjoo;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.99-112
    • /
    • 2020
  • Rhizoremediation, based on the ecological synergism between plant and rhizosphere microorganisms, is an environmentally friendly method for the remediation of petroleum hydrocarbon-contaminated soils. In order to mitigate global climate change, it is necessary to minimize greenhouse gas emissions while cleaning-up contaminated soils. In rhizoremediation, the main factors affecting pollutant remediation efficiency and greenhouse gas emissions include not only pollutant and soil physicochemical properties, but also plant-microbe interactions, microbial activity, and addition of amendments. This review summarizes the development in rhizoremediation technology for purifying oil-contaminated soils. In addition, the key parameters and strategies required for rhizoremediation to mitigate climate change mediation are discussed.

Study on Pandoraea sp. BCNU 315 Isolated from Soil (토양으로부터 분리한 Pandoraea sp. BCNU 315 에 관한 연구)

  • Kim, Seon-A;Choi, Hye-Jung;Woo, Seung-Hee;Hwang, Min-Jung;Park, Mi-Ran;Kim, Dong-Wan;Moon, Ja-Young;Joo, Woo-Hong
    • Journal of Life Science
    • /
    • v.18 no.2
    • /
    • pp.255-263
    • /
    • 2008
  • Bacteria that antagonize plant pathogenic fungi were isolated from the sediment soil at the Ansan industrial estate. One isolate of them showed growth inhibition of Rhizoctonia solani, Botrytis cenerea, and Fusarium oxysporum. This strain was identified as Pandoraea sp. based on phenotypic and phylogenetic characteristics and termed Pandoraea sp. BCNU 315. Tryptone as nitrogen source and sucrose as carbon source were found to be most effective for the microbial growth. In addition, the optimum temperature and pH for microbial growth were $30^{\circ}C$ and pH 7.0, respectively. The substances generated from Pandoraea sp. BCNU 315 were purified and analyzed by column chromatography, HPLC, GC-MS and NMR. As a result, one compound was determined to be indole, another compound was predicted as cyclopentadecaheptene. Detailed structural clarification of the all of the rest six compounds from Pandoraea sp. BCNU 315 has to be accompanied in the further studies.

Changes of Biological and Chemical Properties during Composting of Livestock Manure with Isolated Native Microbe (토착미생물별 가축분 퇴비화 과정중 생물화학적 특성 변화)

  • Han, Hyo-Shim;Lee, Kyung-Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1126-1135
    • /
    • 2012
  • In order to produce high-quality fermenting composts, bacteria strains with high activities of extracellular enzymes (cellulase, chitinase, amylase, protease and lipase) were isolated from the soils in 6 provinces of Korea, and characterized by 16S rRNA gene sequence analysis and properties. The selected 7 stains inoculated to livestock manure for 2' fermenting time, and experimental treatment divided into 3 groups, B1, B2 and B3, according to microbial activity and enzyme type. Our results showed that microbe applications (B1, B2 and B3) can increase (p<0.05) both rhizomes (17-38%) and enzyme activities (50-81%) in compost after fermenting time, respectively, compared to non-microbe treatment (control). The microbe application also decreased significantly (p<0.05) the $NH_3$ and $H_2S$ gas contents 13.4 and 27.3% compared with control, and the Propionic acid and Butyric acid gas contents 14.5 and 19.6%, respectively, as compared to the control. The microbial degradation rate (%) of pesticides and heavy metals increased significantly (p<0.05) after fermenting time, respectively, as compared to the control. Especially, microbe applications were more effective in total rhizomes yields and bioactivities than non-microbe treatment. Thus the results of this study could help in development of potential bioinoculants and composting techniques that maybe suitable for crop production, and protectable for earth environment under various conditions.

Characterization of Extracellular Cholesterol Oxidase Produced from Soil Microorganism (토양 미생물로부터 생산된 Extracellular Cholesterol Oxidase의 특성)

  • Park, Jeong-Su;Jeong, Jong-Moon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.11
    • /
    • pp.1507-1514
    • /
    • 2008
  • Cholesterol oxidase catalyses the conversion of cholesterol to 4-cholesten-3-one. This enzyme has been used for clinical assay of human serum cholesterol and for reduction of cholesterol level in foods and feeds. In order to search the microorganism which has a high extracellular and stable activity of cholesterol oxidase, soil microorganisms were screened. As a result, the one with the highest extracellular cholesterol oxidase activity was obtained and named as the BEN 115. The BEN 115 strain was identified as one of the Nocardia species based on our taxonomic studies. The cholesterol oxidase from this strain was shown to have two bands of extracellular proteins on SDS-PAGE and Western blot. Their molecular masses were estimated to be about 55 and 57 kDa, respectively. In addition, this cholesterol oxidase was considerably stable at the broad range of pH $3.5{\sim}9.5$ and at the temperature of $25{\sim}55^{\circ}C$. The optimum pH and temperature of this cholesterol oxidase were pH 5.5 and $35^{\circ}C$, respectively. The activity of extracellular cholesterol oxidase could be enhanced 1.6 to 2.0 folds by the addition of nonionic detergent such as Triton X-114, Triton X-100, or Tween-80 into the culturing broth. The substrate specificities against campesterol, sitosterol and stigmasterol were measured to be 50%, 50%, and 27%, respectively, compared to the cholesterol. These results suggest that Nocardia sp. BEN 115 may be useful as a microbial source of cholesterol oxidase production.

Distribution of foodborne pathogens in red pepper and environment (고추와 재배환경의 식품매개 병원균 분포)

  • Jung, Jieun;Seo, Seung-Mi;Yang, SuIn;Jin, Hyeon-Suk;Jung, Kyu-Seok;Roh, Eunjung;Jeong, Myeong-In;Ryu, Jae-Gee;Ryu, Kyoung-Yul;Oh, Kwang Kyo
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.799-808
    • /
    • 2021
  • This study was performed to investigate the extent of microbial contamination, the presence of enterotoxin genes, and the antibiotic susceptibility of Bacillus cereus in 58 red pepper plants and 43 environmental samples (soil, irrigation water, and gloves) associated with the plant cultivation. The detected counts of total aerobic bacteria, coliform bacteria, Escherichia coli, Bacillus cereus, and Staphylococcus aureus were lower in these samples, as compared to the regulations of standards for foods; moreover, pathogens, such as E. coli, E. coli O157:H7, Listeria monocytogenes, and Salmonella spp., were not detected. Genes encoding hemolysin BL enterotoxins (hblA, hblC, and hblD) as well as non-hemolytic enterotoxins (nheA, nheB, and nheC) were detected in 23 B. cereus specimens that were isolated from the test samples and had β-hemolytic activity. Interestingly, B. cereus is resistant to β-lactam and susceptible to non-β-lactam antibiotics. However, in this case, the isolated B. cereus specimens exhibited a shift from resistant to intermediate in response to cefotaxime and from susceptible to intermediate in case of rifampin, trimethoprim-sulfamethoxazole, vancomycin, clindamycin, and erythromycin. Therefore, the levels of B. cereus should be monitored to detect changes in antibiotic susceptibility and guarantee their safety.

Acceleration of Biological Denitrification by Using Bioelectrochemical Reactor (생물전기화학반응기를 이용한 생물학적 탈질반응의 촉진)

  • Chun, Ji-Eun;Yu, Jae-Cheul;Park, Young-Hyun;Seon, Ji-Yun;Cho, Sun-Ja;Lee, Tae-Ho
    • Journal of Environmental Science International
    • /
    • v.21 no.8
    • /
    • pp.989-996
    • /
    • 2012
  • Nitrate contamination of water environments can create serious problems such as eutrophication of rivers. Conventional biological processes for nitrate removal by heterotrophic denitrification often need additional organic substrates as carbon sources and electron donors. We tried to accelerate biological denitrification by using bioelectrochemical reactor (BER) in which electrode works as an electron donor. Denitrification activity of 8 environmental samples from various sediments, soils, groundwaters, and sludges were tested to establish an efficient enrichment culture for BER. The established enrichment culture from a soil sample showed stable denitrification activity without any nitrite accumulation. Microbial community analysis by using PCR-DGGE method revealed that dominant denitrifiers in the enrichment culture were Pantoea sp., Cronobacter sakazakii, and Castellaniella defragrans. Denitrification rate ($0.08kg/m^3{\cdot}day$) of the enrichment culture in BER with electrode poised at -0.5 V (vs Ag/AgCl) was higher than that ($2.1{\times}10^{-2}kg/m^3{\cdot}day$) of BER without any poised potential. This results suggested that biological denitrification would be improved by supplying potential throughout electrode in BER. Further research using BER without any organic substrate addition is needed to apply this system for bioremediation of water and wastewater contaminated by nitrate.

The Analysis of the Archaeological Soils excavated at Wanggung-ri (토양분석을 통한 고고학적 해석-익산 왕궁리 수혈유구 토양을 대상으로)

  • Kim, Min-Hee;Seo, Min-Seok;Chung, Yong-Jea;Jeon, Yong-Ho
    • 보존과학연구
    • /
    • s.26
    • /
    • pp.103-126
    • /
    • 2005
  • Coprostanol is a metabolic product of cholesterol, formed by microbial action in the mammalian gut. This chemical compound is the major sterol in human and has been routinely studied as a biomarker of sewage pollution in marine and lacustrinesediments. This has led to the search for coprostanol as a biomarker in archaeologicalsoils, in order to detect the presence of fecal material. In this study, five samples of archaeological soils excavated at Wanggung ri, Iksancity, were used to assess the possibility of using coprostanol as indicators of ancient human activity in archaeological areas. The sampled soils were analyzed MXRD,EDXRF for their physical and chemical properties. And coprostanol was analysed byGC/MSD, using SIM method to detect and quantify specific compound. The results showed the soils were composed of quartz and feldspars, inorganicelement such as $SiO_2$, $Al_2O_3$, $Fe_2O_3$ etc. Moreover, the result from the analysis wasindicated that the specific compound is coprostanol. The coprostanol was determined at $0.16~1.01\mug$/g in the range of concentrations. This finding indicate that clear promise exists for the exploitation of coprostanol as biomarker of ancient human activity inarchaeological survey. Therefore such studies can serve to increase the confidence we place on biomarker-based methodologies for assessing fecal pollution. The application of this methodology has proved a simple and effective way of searching for that pattern in successively more aged deposits either known or suspected to contain fecal material. And the more scientific analysis of the soils will be showed to utility of the area ancient dietary life style, ancient environment.

  • PDF