• 제목/요약/키워드: Soil microbes

검색결과 212건 처리시간 0.024초

무우 배추 포장내의 병원성 토양미생물 소장 (The fluctuation of soil pathogenic microbes population in radish and chinese cabbage fields)

  • 이왕휴;소인영
    • 미생물학회지
    • /
    • 제21권1호
    • /
    • pp.7-14
    • /
    • 1983
  • In order to study the effects of cropping system and fungicide (Dachigaren) on soil microbes, the seasonal fluctuations of soil microbes in the fields of radish and Chinese cabbage including soil pH, Soil moisture content and soil temperature were investigated on every 15 day interval from the begining of March to late October in 1981. The population of total fungus peaked at the begining of July, while that of total bacteria, at the begining of August. They were affected by soil temperature, however pathogenic microbes seemed to be more related with host plants than the soil temperature, because pathogens showed high density through the whole cultivation period. The pathogenic microbes showed the density of order ; Xanthomonas, Erwinia, Pseudomonas, Agrobacterium and Corynebacterium. Xanthomonas, Erwinia and Pseudomonas, which induced radish and Chinese cabbage diseases were higher than Agrobacterium and Corynebacterium in population densigy. Bacterial soft rot occured at the density of Erwinia $5.9{\sim}6.6{\times}10^5/dry$ soil 1 gram. The density of microbes on continuous fields were higher than that of rotating fields, but there were no significant difference between treated fungicide plot and non treated in the density of microbes, also no difference between Chinese cabbage and radish growing fields.

  • PDF

지중오존산화시 토양유기물질과 수분이 토착미생물의 생존과 재성장에 미치는 영향

  • 손규동;정해룡;최희철;김수곤;양지원
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.334-337
    • /
    • 2003
  • This study was carried out to investigate the effect of soil properties, such as soil organic matter(SOM) content and water content on die-off and regrowth of indigenous microbes due to in-situ ozonation. Four different soils were collected and the soil samples applied to different ozonation time(0-360 min) were incubated during 4 weeks. Population of the indigenous microbes was monitored during incubation period. The number of indigenous microbes in all samples dramatically decreased (more than 90%) within 30 minutes of ozone injection. With increased ozonation time by 360 minutes, the number of the indigenous microbes decreased by 99.99% in all samples. Die-off of the indigenous microbes due to ozone treatment was inversely proportional to SOM and water content. Especially, sample 3 and Sample 4 containing relatively high SOM content and water content showed high regrowth rate, and this resulted from the increase of water soluble and biodegradable organic fraction in soil water after ozone treatment. Soil sample ozonated for 360 minutes showed minor increase in microbial population during 4 weeks of incubation period.

  • PDF

디젤 오염토양에서 화학적 산화에 의한 PAH 분해특성 및 PAH 분해미생물의 거동

  • 정해룡;안영희;김인수;최희철
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 총회 및 춘계학술발표회
    • /
    • pp.22-25
    • /
    • 2002
  • The effect of in-situ chemical oxidation on the indigenous soil microorganisms (total microbes and PAH-degrading microbes) and contaminant removal were investigated. Field soil contaminated with diesel in gas station was collected and the soil was treated from 0 to 900 minutes by in-situ ozonation as chemical remediation. The treated soil samples were incubated with supplying oxygen during the 9 weeks to understand the characteristics of microbes regrowth, damaged by ozone. The sharp decrease of aromatic fraction and TPH was observed within 60 minutes of ozone application and aromatic fraction and TPH then slowly decreased. The phenanthren-degrading bacteria were the most sensitive to ozonation, because 1 hour of ozonation reduced the microbes from 10$^{6}$ CFU/g-soil to below detection limits.

  • PDF

유류오염토양에서 유류분해 미생물의 분리 및 peat moss를 이용한 오염토양 처리에 관한 연구 (A Study on the Isolation of the Oil-degradation Microbes and Treatment Efficiency in the Oil Contaminated Soil with Peat Moss)

  • 천미희;손희정;김철
    • 한국환경보건학회지
    • /
    • 제33권5호
    • /
    • pp.462-469
    • /
    • 2007
  • Isolation and application of oil-degradation microbes from the oil-contaminated soil and the determination of optimal operation conditions about the peat moss, the addition for the oil-biodegradation. After all experiments, we have acquired three important conclusions: First, we found out the 4 microbes, Pseudomonas fluorescens, Pseudomonas aeruinosa, Kurtia sp., Bacillus ceres, with excellent capability for the oil-degradation; Second, the optimal operating conditions of the peat moss for TPH treatment were pH $7{\sim}8$, temperature $25{\sim}30^{\circ}C$, water content 20%, mixing 2 times/ day, addition volume 2%; Third, in case of the application to the oil-contaminated soil with 4 mixed microbes, the removal efficiency of TPH was increased from 54% to 83% in oil-contaminated soil and from 65% to 85% in oil-contaminated soil with the peat moss.

지표와 지중 퇴비 시비에 따른 토양에서의 분변성 미생물 생존성 비교 (Comparison of Fecal Microbes' Survival in Soil between Compost Surface Application and Soil Incorporation)

  • 전상민;송인홍;김계웅;황순호;강문성
    • 한국농공학회논문집
    • /
    • 제57권3호
    • /
    • pp.1-7
    • /
    • 2015
  • The objective of this study was to compare fecal microbes survival in soil between compost surface application and soil incorporation. The survival experiment was conducted in six styrofoam beds ($510{\times}325{\times}305(mm)$ in size) filled with sandy loam soil. A half of six boxes were received by compost surface application, while the other half were treated with compost-soil mixture. Duplicated surface and surbsurface soil (20 cm depth) samples were collected at various interval up to 50 days and analyzed for the determination of fecal coliforms and E. coli numbers. As expected, surface applied beds demonstrated two to three magnitudes order greater in both the study microorganisms as compared to soil incorporated beds. Microbial inactivation rate of soil surface was twice as great as subsurface soil condition probably due to exposure to sun light and environmental conditions including moisture loss. When rainfall occurred, microbes on the surface were transported into soil along with water movement. It was concluded that surface compost application may be easier to apply but pose higher risk of human exposure to microbes. Winter compost application may be favorable in alleviating health risk by giving some time for inactivation compared to spring application.

Isolation of Soil Microorganisms Having Antibacterial Activity and Antimigratory Effects on Sphingosylphosphorylcholine-induced Migration of PANC-1 Cells

  • Kang, Jun-Hee;Park, Mi-Kyung;Kim, Hyun-Ji;Kim, Yu-Ri;Lee, Chang-Hoon
    • Toxicological Research
    • /
    • 제27권4호
    • /
    • pp.241-246
    • /
    • 2011
  • To obtain soil microorganisms producing antimigratory activity which is important in controlling the metastasis of cancer cells, more than three hundreds of soil microbes were isolated from sixteen soil sources including Namsan mountain and designated as DGU1001-10338. At first, their antibiotic activities were examined by paper-disc method. More than 40 soil microbes produced compounds with antibiotic activity. Then, antimigratory activities of selected soil microorganisms were examined in a sphingosylphosphorylcholine-induced migration assay in PANC-1 cells. Six of 42 soil microorganisms having antibacterial activity also had more than 45% inhibitory activity on migration of PANC-1 cells. These results suggested that selected soil microorganisms were a useful starting point to find compounds for controlling metastasis of cancer cells.

Biodegradation Kinetics of Diesel in a Wind-driven Bioventing System

  • Liu, Min-Hsin;Tsai, Cyuan-Fu;Chen, Bo-Yan
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권5호
    • /
    • pp.8-15
    • /
    • 2016
  • Bioremediation, which uses microbes to degrade most organic pollutants in soil and groundwater, can be used in solving environmental issues in various polluted sites. In this research, a wind-driven bioventing system is built to degrade about 20,000 mg/kg of high concentration diesel pollutants in soil-pollution mode. The wind-driven bioventing test was proceeded by the bioaugmentation method, and the indigenous microbes used were Bacillus cereus, Achromobacter xylosoxidans, and Pseudomonas putida. The phenomenon of two-stage diesel degradation of different rates was noted in the test. In order to interpret the results of the mode test, three microbes were used to degrade diesel pollutants of same high concentration in separated aerated batch-mixing vessels. The data derived thereof was input into the Haldane equation and calculated by non-linear regression analysis and trial-and-error methods to establish the kinetic parameters of these three microbes in bioventing diesel degradation. The results show that in the derivation of μm (maximum specific growth rate) in biodegradation kinetics parameters, Ks (half-saturation constant) for diesel substance affinity, and Ki (inhibition coefficient) for the adaptability of high concentration diesel degradation. The Ks is the lowest in the trend of the first stage degradation of Bacillus cereus in a high diesel concentration, whereas Ki is the highest, denoting that Bacillus cereus has the best adaptability in a high diesel concentration and is the most efficient in diesel substance affinity. All three microbes have a degradation rate of over 50% with regards to Pristane and Phytane, which are branched alkanes and the most important biological markers.

해안간척지 토양의 생물학적 토성개량에 관한 연구 (제 2 ) -간척지토양에 있어서 생물의 화에 대하여- (Biological improvement of reclaimed tidal land soil (II) -Changes of soil-microbial populations in reclaimed tidal land-)

  • 홍순우;하영칠;이광웅
    • 미생물학회지
    • /
    • 제6권4호
    • /
    • pp.131-140
    • /
    • 1968
  • The soil of the reclaimed tidal land, located in Chogi-ri, Is. Kanghwa, Korea was used in this experiment. The experimented soil samples were collected from 18 sites with its time elapsed after the shore-protection works, soil-depth and the vegetation of saline plants, and at each site samplings were conducted monthly from March through October, 1968, for the purposes of examining the changes of microbial populations for the microbes such as bacteria, actinomycetes and fungi, by using the dilution plate method. The numbers of the microbes in these soils generally showed lower levels comparing with those of other soils. The more time elapsed after the reclamation, the higher numbers of the microbes inhibited the soils. Higher populations were there in the surface soils than in the lower part of the area. The surface soils included comparatively better conditions in aeration and contents of organic matter than in the lower part, and this fact was. same as in general soils. However, not so was this in the case of March, April and October due to the higher soil temperatures in the lows. At the experimental sites where the halophytes such as Salicorniu were grown vigourously, the more densly the plants grew, the higher populations of actinomycetes and fungi were, but not in the case of bacterial population. This means, in this soil with dense Salicornia, it is difficult to obtain good-natured soils in short time without a higher population of bacteria. For the rapid utilization of the land soil, in this view of point, the methods increasing the number of bacteria in the soil are needed as well as the cultivation and harvesting Salicorniu which indicated in the privious paper(Hong, et al., 1969a). According to the results of this experiment, the changes of soil-microbial populations in the reclaimed tidal land soil containing high salinity depend deeply upon the interrelations of many environmental factors such as soil-salinity, soil-components and contents, concentration of organic matters, pH, aeration, and air and soil temperatures, as in the general soils.

  • PDF

생장 온도 범위별 최적의 유류분해 미생물을 이용한 토양경작 정화기술의 효율성 제고에 관한 현장 적용성 연구 (A Field Study on the Enhancement of Landfarming Performance Using Oil-degradable Microbes Adapted to Various Temperature Range)

  • 유재봉;김정호;김국진;오승택;이철효;박이경;장윤영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제14권5호
    • /
    • pp.10-17
    • /
    • 2009
  • 생물학적 정화는 TPH로 오염된 지역을 정화하는 효과적인 방법으로 적용되고 있다. 하지만 미생물의 분해 활성이 적정온도 이하, 이상의 온도에서는 감소하기 때문에, 생분해 효율이 온도의 변화에 많은 영향을 받는 것으로 알려져 있다. 따라서 이번 연구의 목적은 유류 분해 효율이 우수한 중저온성 미생물을 분리하여 TPH로 오염된 지역에 적용할 때의 정화효율을 평가해 보는 것이다. 먼저 탄화수소 분해효율이 뛰어난 중온성($30^{\circ}C$)미생물 5종과 저온성($80^{\circ}C$) 미생물 3종의 consortia를 분리하였으며, 이들 미생물 consortia를 실험실내에서 유류로 오염된 토양에 적용해 본 결과, 중온성 미생물의 경우 초기 TPH 4,044 mg/kg이 10일 경과 후 1,084 mg/kg으로 73.2%, 저온성 미생물은 TPH 5,427 mg/kg이 50일 경과 후 1,756 mg/kg으로 67.6%의 처리효율을 보였다. 이 분해율은 휘발이나 희석에 의한 물리적 저감을 포함한다. 이후 분리된 미생물들을 토양 경작 현장에 적용해 본 결과, TPH 2,560 mg/kg의 오염이 56일 경과 후 87.1%의 제거율을 보였으며, 이때의 생분해 반응 속도상수는 $0.0374\;day^{-1}$이었다. 본 연구 결과는 저온, 중온 상태에서 미생물을 이용한 생물학적 정화가 더 다양하게 이용될 수 있는 가능성을 보여준 것으로 판단된다.

비젼시스템을 이용한 토양미생물 관측장비 개발 (Development of Observation Equipment for Soil Microorganisms Using Vision System)

  • 김일배;홍원학;이학성;서명교;서정호
    • 한국환경보건학회지
    • /
    • 제30권2호
    • /
    • pp.108-114
    • /
    • 2004
  • Observation of microorganisms collected from contaminated soils has been mainly conducted by using microscopy. Microscopic measurement is occupied an important part of the microorganism experiment, and is used as an important tool to count microorganisms as well as to observe cellular form and mode of life in the field of soil microbe observation. In general, observation equipments for soil microbes consist of electron microscope, camera, frame grabber (image acquisition baud), and image analysis software. Because image analysis software should be linked with frame grabber most equipments have to be imported as the package form. Therefore, the observation system is very expensive and difficult to be operated. In this study, soil microbes' observation equipment with the vision system which is easy operated and cheaper than imported one was developed and tested. The efficiency of image capturing and data aquisition with developed frame grabber and software in this experiment was good enough to analyze the image of soil microorganism.