• 제목/요약/키워드: Soil mechanical characteristics

검색결과 239건 처리시간 0.024초

Strength and compressibility characteristics of peat stabilized with sand columns

  • Jorat, M. Ehsan;Kreiter, Stefan;Morz, Tobias;Moon, Vicki;de Lange, Willem
    • Geomechanics and Engineering
    • /
    • 제5권6호
    • /
    • pp.575-594
    • /
    • 2013
  • Organic soils exhibit problematic properties such as high compressibility and low shear strength; these properties may cause differential settlement or failure in structures built on such soils. Organic soil removal or stabilization are the most important methods to overcome geotechnical problems related to peat soils' engineering characteristics. This paper presents soil mechanical intervention for stabilization of peat with sand columns and focuses on a comparison between the mechanical characteristics of undisturbed peat and peat stabilized with 20%, 30% and 40% of sand on the laboratory scale. Cylindrical columns were extruded in different diameters through a nearly undisturbed peat sample in the laboratory and filled with sand. By adding sand columns to peat, higher permeability, higher shear strength and a faster consolidation was achieved. The sample with 70% peat and 30% sand displayed the most reliable compressibility properties. This can be attributed to proper drainage provided by sand columns for peat in this specific percentage. It was observed that the granular texture of sand also increased the friction angle of peat. The addition of 30% sand led to the highest shear strength among all mixtures considered. The peat samples with 40% sand were sampled with two and three sand columns and tested in direct shear and consolidation tests to evaluate the influence of the number and geometry of sand columns. Samples with three sand columns showed higher compressibility and shear strength. Following the results of this laboratory study it appears that the introduction of sand columns could be suitable for geotechnical peat stabilization in the field scale.

교대-토체의 강성저하를 고려한 교량의 지진거공분석 (Seismic Behavior Analysis of a Bridge Considering stiffness Degradation due to Abutment-Soil Interaction)

  • 김상효
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.357-366
    • /
    • 2000
  • Longitudinal dynamic behaviors of a bridge system under seismic excitations are examined with various magnitudes of peak ground accelerations. The stiffness degradation due to abutment-soil interaction is considered in the bridge model which may play the major role upon the global dynamic characteristics. The idealized mechanical model for the whole ridge system is proposed by adopting the multiple-degree-of-freedom system which can consider components such as pounding phenomena friction at the movable supports rotational and translational motions of foundations and the nonlinear pier motions. The abutment-soil interaction is simulated by utilizing the one degree-of-freedom system with nonlinear spring. The stiffness degradation of the abutment-soil system is found to increase the relative displacement under moderate seismic excitations.

  • PDF

석회와 여러 첨가제에 의한 토질안정처리 (Soil-Lime and Additives Stabilization)

  • 민덕기;황광모;박근호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.657-664
    • /
    • 2000
  • Weak and soft compressible clay deposits are commonly found in natural subgrade soils. These Soils need to be stabilized for using the subbase materials of highway constructions. This paper presents that a chemical treatment using chemical additives comprised of sulfate(SO$_4$) and chloride(Cl) is evaluated for stabilizing soft clay deposits and lime. The physical and mechanical characteristics of soil-lime and additives are described by means of a laboratory study. The study results indicate that the presence of chlorides encouraged the efficiency of lime stabilization, and the use of calcium chloride with quicklime is the best additive for improving soil behavior. The treated soil with lime-calcium chloride can have the adaptability to the subbase materials of highway constructions.

  • PDF

Effect of water content on near-pile silt deformation during pile driving using PIV technology

  • Jiang, Tong;Wang, Lijin;Zhang, Junran;Jia, Hang;Pan, Jishun
    • Geomechanics and Engineering
    • /
    • 제23권2호
    • /
    • pp.139-149
    • /
    • 2020
  • Piles are widely used in structural foundations of engineering projects. However, the deformation of the soil around the pile caused by driving process has an adverse effect on adjacent existing underground buildings. Many previous studies have addressed related problems in sand and saturated clay. Nevertheless, the failure mechanism of pile driving in unsaturated soil remains scarcely reported, and this issue needs to be studied. In this study, a modeling test system based on particle image velocimetry (PIV) was developed for studying deformation characteristics of pile driving in unsaturated silt with different water contents. Meanwhile, a series of direct shear tests and soil-water characteristic curve (SWCC) tests also were conducted. The test results show that the displacement field shows an apparent squeezing effect under the pile end. The installation pressure and displacement field characteristics are sensitive to the water content. The installation pressure is the largest and the total displacement field is the smallest, for specimens compacted at water content of 11.5%. These observations can be reasonably interpreted according to the relevant unsaturated silt theory derived from SWCC tests and direct shear tests. The variation characteristics of the soil displacement field reflect the macroscopic mechanical properties of the soil around the pile.

휴대용 정적 콘 관입시험을 통한 저수지 제방 토양의 다짐, 강도 특성 및 사면 안정성 예측 (Prediction of Compaction, Strength Characteristics for Reservoir Soil Using Portable Static Cone Penetration Test)

  • 전지훈;손영환;김태진;조상범;정승주;허준;봉태호;김동근
    • 한국농공학회논문집
    • /
    • 제65권5호
    • /
    • pp.1-11
    • /
    • 2023
  • Due to climate change and aging of reservoirs, damage to embankment slopes is increasing. However, the safety diagnosis of the reservoir slope is mainly conducted by visual observation, and the time and economic cost are formidable to apply soil mechanical tests and slope stability analysis. Accordingly, this study presented a predicting method for the compaction and strength characteristics of the reservoir embankment soil using a portable static cone penetration test. The predicted items consisted of dry density, cohesion, and internal friction angle, which are the main factors of slope stability analysis. Portable static cone penetration tests were performed at 19 reservoir sites, and prediction equations were constructed from the correlation between penetration resistance data and test results of soil samples. The predicted dry density and strength parameters showed a correlation with test results between R2 0.40 and 0.93, and it was found to replace the test results well when used as input data for slope stability analysis (R2 0.8134 or more, RMSE 0.0320 or less). In addition, the prediction equations for the minimum safety factor of the slope were presented using the penetration resistance and gradient. As a result of comparing the predicted safety factor with the analysis results, R2 0.5125, RMSE 0.0382 in coarse-grained soil, R2 0.4182 and RMSE 0.0628 in fine-grained soil. The results of this study can be used as a way to improve the existing slope safety diagnosis method, and are expected to be used to predict the characteristics of various soils and inspect slopes.

굴패각 고화재를 혼합한 준설토의 전단특성 (Shear Strength Characteristics of Dredged Soil with Oyster Shell Binder)

  • 이상진;윤길림;이윤규;이기동;강인규;김홍택;백승철
    • 한국지반환경공학회 논문집
    • /
    • 제8권1호
    • /
    • pp.27-32
    • /
    • 2007
  • 연약지반과 관련된 공사에서는 표층을 개량하여 교통성을 확보하여야 한다. 이를 위해 고화재를 이용한 지반개량공법이 이용되고 있으나, 지금까지 사용된 고화재는 시멘트를 개량한 제품을 이용하였다. 그러나 현재 폐기물로 인정되는 굴패각의 재활용 기회를 확대하기 위해 굴패각을 이용한 고화재를 개발하여 사용하고 있다. 본 연구에서는 준설토를 대상으로 굴패각 고화재의 혼입율, 함수비, 양생일에 따른 강도 특성을 분석하여 굴패각 고화재의 역학적 특성이 우수함을 확인하였다.

  • PDF

사질토의 전단거동에 실트 함량이 미치는 영향 (Effect of Silty Soil Content on Shear Behavior of Sandy Soil)

  • 유정석;안광국;강홍식
    • 한국지반환경공학회 논문집
    • /
    • 제21권11호
    • /
    • pp.21-26
    • /
    • 2020
  • 자연상태의 흙은 다양한 크기의 입자로 구성되어 있으며, 이 흙의 역학적 거동 중 전단거동은 입도 분포에 크게 영향을 받는다. 그리고 자연상태의 흙은 조립토와 세립토가 다양하게 혼합되어 존재하기 때문에 그 역학적 성질인 전단특성을 명확히 파악하기 어렵다. 이에 본 연구에서는 흙의 입도 분포가 흙의 전단특성에 미치는 영향을 확인하기 위한 목적으로 조립토는 모래를 세립토는 실트를 이용해 모래에 대한 실트의 함유량을 변화시켜 입도 분포가 다른 사질토를 조성한 후 링 전단시험을 수행하였다. 그리고 물 공급 시 입도 분포가 다른 사질토의 전단특성 변화를 확인하기 위해 링 전단시험 중 물을 공급하여 실험을 수행하였다. 그 결과 실트 함유량이 증가할수록 전단강도는 점차 증가하다 실트 함유량이 모래보다 많아지면 전단강도는 감소하는 것으로 나타났다. 그리고 수분 공급 시 실트 함유량에 따라 잔류전단강도는 완만한 경사를 나타내며 감소하는 것으로 나타났다.

파종방법에 따른 수크령, 갈대, 억새의 발아 및 초기생장 특성 (Germination and Early Growth Characteristics of Pennisetum alopecuroides, Phragmites communis, and Miscanthus sinensis According to the Seeding Methods)

  • 조용현;이가형
    • 한국환경복원기술학회지
    • /
    • 제17권1호
    • /
    • pp.163-172
    • /
    • 2014
  • To investigate the possibility of developing the seeding measure for river bank slope revegetation, germination experiment and early growth observation were conducted using 3 native species growing naturally around river banks such as Pennisetum alopecuroides, Phragmites communis, and Miscanthus sinensis. The applied seeding methods were 3 such as scattering seeds, tillage after scattering seeds, and covering up seed with soil after scattering seeds. According to seeding methods, germination experiment and early growth observation were carried out on nursery bed soil in greenhouse. As results of this study, all the 3 native plant species' germination ratio and growth in length on nursery bed soil were highest on the seeding method of covering up seed with soil. Also it was verified by Duncan's multiple range test that the germination ratio and growth in length on the seeding method of covering up seed with soil is distinguished from those on other two seeding methods. According to this results, the best possible seeding measure to be developed should be mechanical seed spraying with soil.

준설토와 친토양 경화재 혼합지반의 일축강도특성 (Characteristics of Unconfined Compressive Strength of Dredged Clay Mixed with Friendly Soil Hardening Agent)

  • 오세욱;연용흠;권영철
    • 한국지반환경공학회 논문집
    • /
    • 제17권10호
    • /
    • pp.73-81
    • /
    • 2016
  • 선진국에서는 준설토의 고함수비 특성을 제어하기 위해 다양한 고화제를 이용하는 공법을 개발하고 있으며 이 중 점토에 시멘트를 혼합하는 방법은 주로 심층혼합공법 등 연약지반의 개량공법으로 사용되어 왔다. 그러나 이에 관련된 연구는 고화제가 10% 전후의 혼합률을 갖고 있으며 이러한 혼합점토의 단기적인 특성에 대한 실험적 구명에 집중되어 왔다. 본 연구에서는 연약지반의 개량공법 적용 시 준설점토를 시멘트와 친토양 경화재로 고결시켜 장비의 주행성을 확보할 목적으로 시멘트와 친토양 경화재(NSS)를 혼합교반 하였다. 이를 바탕으로 원지반의 건조중량 대비 시멘트, NSS의 혼합비 및 양생기간(7일, 14일, 28일)에 따른 개량토의 일축압축강도 특성을 규명하고자 하였으며, 준설토 재활용을 위한 기술개발을 위하여 경량화제를 첨가하지 않은 시멘트혼합처리 방법과 친토양 경화재인 NSS를 혼합한 지반의 강도특성을 제공함으로써 차후 연약지반 개량을 위한 장비의 주행성을 확보하는데 연구의 목적을 두었다.

Mechanical properties and failure mechanism of gravelly soils in large scale direct shear test using DEM

  • Tu, Yiliang;Wang, Xingchi;Lan, Yuzhou;Wang, Junbao;Liao, Qian
    • Geomechanics and Engineering
    • /
    • 제30권1호
    • /
    • pp.27-44
    • /
    • 2022
  • Gravelly soil is a kind of special geotechnical material, which is widely used in the subgrade engineering of railway, highway and airport. Its mechanical properties are very complex, and will greatly influence the stability of subgrade engineering. To investigate the mechanical properties and failure mechanism of gravelly soils, this paper introduced and verified a new discrete element method (DEM) of gravelly soils in large scale direct shear test, which considers the actual shape and broken characteristics of gravels. Then, the stress and strain characteristics, particle interaction, particle contact force, crack development and energy conversion in gravelly soils during the shear process were analyzed using this method. Moreover, the effects of gravel content (GC) on the mechanical properties and failure characteristics were discussed. The results reveal that as GC increases, the shear stress becomes more fluctuating, the peak shear stress increases, the volumetric strain tends to dilate, the average particle contact force increases, the cumulative number of cracks increases, and the shear failure plane becomes coarser. Higher GC will change the friction angle with a trend of "stability", "increase", and "stability". Differently, it affects the cohesion with a law of "increase", "stability" and "increase".