• 제목/요약/키워드: Soil layer

검색결과 1,787건 처리시간 0.031초

Influence of dual layer confinement on lateral load capacity of stone columns: An experimental investigation

  • Akash Jaiswal;Rakesh Kumar
    • Geomechanics and Engineering
    • /
    • 제32권6호
    • /
    • pp.567-581
    • /
    • 2023
  • Enhanced vertical load capacity of the ground reinforced with the stone columns drew great attention by the researchers as it deals with many of the geotechnical difficulties associated with the weak ground. Recently, it has been found that the stone columns are also prone to fail under the shear load when employed beneath the embankments or the foundations susceptible to lateral loads. In this study, the effect of various encasement conditions on the lateral deflection of stone columns is investigated. A method of dual layers of encasement has been introduced and its the effect on lateral load capacity of the stone columns has been compared with those of the single encased stone column and the un-encased stone columns. Large shear box tests were utilised to generate the shear deformation on the soil system under various normal pressure conditions. The stiffness of the soil-stone column combined system has been compared for various cases of encasement conditions with different diameters. When subjected to lateral deformation, the encased columns outperformed the un-encased stone columns installed in loose sand. Shear stress resistance is up to 1.7 times greater in dual-layered, encased columns than in unencased columns. Similarly, the secant modulus increases as the condition changes from an unencased stone column to single-layer encasement and then to dual-layer encasement, indicating an improvement in the overall soil-stone column system.

식생형시설의 직접유출량 저감 효과분석 및 적용 방법 타당성 검토 (Direct Runoff Reduction Analysis and Application Feasibility Evaluation of Vegetation-type Facilities)

  • 이한용;우원희;박윤식
    • 농촌계획
    • /
    • 제30권2호
    • /
    • pp.69-77
    • /
    • 2024
  • As impervious area increases due to urbanization, rainfall on the impervious area does not infiltrate into the ground, and stormwater drains quickly. Low impact development (LID) practices have been suggested as alternatives to infiltrate and store water in soil layers. The practices in South Korea is applied to urban development projects, urban renewal projects, urban regeneration projects, etc., it is required to perform literature research, watershed survey, soil quality, etc. for the LID practices implementation. Prior to the LID implementation at fields, there is a need to simulate its' effect on watershed hydrology, and Storm Water Management Model (SWMM) provides an opportunity to simulate LID practices. The LIDs applied in South Korea are infiltration-based practices, vegetation-based practices, rainwater-harvesting practices, etc. Vegetation-based practices includes bio-retention cell and rain garden, bio-retention cells are mostly employed in the model, adjusting the model parameters to simulate various practices. The bio-retention cell requires inputs regarding surface layer, soil layer, and drain layer, but the inputs for the drain layer are applied without sufficient examination, while the model parameters or inputs are somewhat influential to the practice effects. Thus, the approach to simulate vegetation-based LID practices in SWMM uses was explored and suggested for better LID simulation in South Korea.

Effect of Temperature and Plow Pan on Water Movement in Monolithic Weighable Lysimeter with Paddy Sandy Loam Soil during Winter Season

  • Seo, Mijin;Han, Kyunghwa;Jung, Kangho;Cho, Heerae;Zhang, Yongseon;Choi, Seyeong
    • 한국토양비료학회지
    • /
    • 제49권4호
    • /
    • pp.300-309
    • /
    • 2016
  • The monolithic weighing lysimeter is a useful facility that could directly measure water movement via layers, drainage, and evapotranspiration (ET) with precise sensors. We evaluated water movement through layers and water balance using the lysimeter with undisturbed paddy sandy loam soil, Gangseo soil series (mesic family of Anthraquic Eutrudepts classified by Soil Taxonomy) during winter season from Dec. 2014 to Feb. 2015. Daily ET indicated up to 1.5 mm in December and January and 2 mm in February. The abrupt increase of soil water tension at the depth of 0.1 m, when soil temperature at the same depth was below $2^{\circ}C$, was observed due to temporary frost heaving. The surface evaporation was less than reference ET below -15 kPa of soil water potential at the depth of 0.1 m. The maximum drainage rate was similar to the saturated hydraulic conductivity of a plow pan layer. Both upward and downward water movement, related to ET and drainage, were retarded by a plow pan layer. This study demonstrated that the lysimeter study could well quantify water balance components even under frost heaving during winter season and that a plow pan with low permeability could act as a boundary that affects drainage and evapotranspiration.

새만금 방조제 개활지의 준설토 기반에 대한 배수층재 처리가 수목 생육에 미치는 효과 (Effects of Materials of Drainage Layer at the Reclaimed Soil Base on Tree Growth at the Open Space of Saemangeum Sea Dike)

  • 이한나;임주훈;구남인;배상원
    • 한국환경복원기술학회지
    • /
    • 제18권1호
    • /
    • pp.13-23
    • /
    • 2015
  • This study was performed to compare the effects of different drainage layers on tree growth at the exposed sites of Saemangeum sea dike. 4 types of drainage layers including control(dredged soil), specially prepared bark, gravel, and wood chip were set in 150~165cm depth of soil. Pinus thunbergii and Celtis sinensis were planted after 9 months of soil treatment. Electrical conductivity(EC) of soil in all treated plots were decreased under $4dS{\cdot}m^{-1}$, and NaCl(%) was decreased under 0.05% after 1 year from soil treatment. Soil moisture at the 120cm depth of the bark treated plot was higher than that of the 180cm soil depth, below the drainage layer. It is considered that vertical mobility of water was inhibited. Organic matter(OM) at the 120cm soil depth increased at bark and wood chip treated plots. Survival rates after 4 years of P. thunbergii and C. sinensis were 100% in all treatments. The height of P. thunbergii was not significantly different among the treatments while the height of C. sinensis was significantly different among the treatments and it was highest at the bark treated plot.

현장도로 모형실험을 이용한 포장구성층의 동결 특성 분석 (The Freezing Characteristics of Pavement Layer Using the Field Road Model Test)

  • 신은철;류병현;박정준
    • 한국지반공학회논문집
    • /
    • 제26권7호
    • /
    • pp.71-80
    • /
    • 2010
  • 지리학적 특성으로 국내는 계절 동토지역으로 겨울철에는 동상현상이 발생하고 봄철에는 지반이 해빙된다. 도로는 다양한 재료와 단면으로 구성된 구조물이기 때문에 환경성과 재료 물성뿐만 아니라 포장체 각 층의 구조적 적정성 또는 지지력을 파악하는 것이 무엇보다 중요하다. 현재 기존 동상방지층 설계법에 따르면, 동상방지층은 포장체의 구조적 적정성과는 무관하게 온도조건에 따른 동결깊이에 따라 일률적으로 결정되고 있다. 이러한 동결깊이를 포장구조설계에 적용함으로써 포장의 과다설계 우려가 있다. 따라서 본 논문에서는 노상층, 동상방지층, 보조기층의 역학적 실험을 실시하여 동상민감성을 판단하고 실규모 현장도로 모형축소 실험을 실시하였다. 동상민감성을 판단하기 위하여 토층별 온도, 동결팽창량, 부동수분 및 동결깊이를 측정하였다.

Mathematical modeling of smart nanoparticles-reinforced concrete foundations: Vibration analysis

  • Kargar, Masood;Bidgoli, Mahmood Rabani
    • Steel and Composite Structures
    • /
    • 제27권4호
    • /
    • pp.465-477
    • /
    • 2018
  • In this research, vibration and smart control analysis of a concrete foundation reinforced by $SiO_2$ nanoparticles and covered by piezoelectric layer on soil medium is investigated. The soil medium is simulated with spring constants and the Mori-Tanaka low is used for obtaining the material properties of nano-composite structure and considering agglomeration effects. With considering first order shear deformation theory, the total potential energy of system is calculated and by means of Hamilton's principle in three displacement directions and electric potential, the six coupled equilibrium equations are obtained. Also, based an analytical method, the frequency of system is calculated. The effects of applied voltage, volume percent and agglomeration of $SiO_2$ nanoparticles, soil medium and geometrical parameters of structure are shown on the frequency of system. Results show that with applying negative voltage, the frequency of structure is increased.

대형 평판재하시험을 통한 PF 공법의 하중전이 특성 분석 (Evaluation of Bearing Capacity and Load Transfer Characteristics of Point Foundation(PF) Method through the Large Plate Bearing Test)

  • 강민수;조명수;고용택
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.142-143
    • /
    • 2021
  • The general ground conditions in Korea are distributed in order of fill, deposit soil, weathered soil, weathered rock, soft rock. The fill soil and deposit soil located at the top have relatively low strength compared to the lower layer, and they are sometimes classified as soft ground according to the standard penetration test results. In this study, the PF method, a ground improvement method, was applied to the soft layer, a large plate load test was conducted on the improved ground, and the results were reviewed.

  • PDF

Evaluation of sensitivity of soil respiration to temperature in different forest types and developmental stages of maturity using the incubation method

  • Lee, Eun-Hye;Suh, Sang-Uk;Lee, Chang-Seok;Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • 제35권1호
    • /
    • pp.1-7
    • /
    • 2012
  • To calculate and predict soil carbon budget and cycle, it is important to understand the complex interrelationships involved in soil respiration rate (Rs). We attempted to reveal relationships between Rs and key environmental factors, such as soil temperature, using a laboratory incubation method. Soil samples were collected from mature deciduous (MD), mature coniferous (MC), immature deciduous (ID), and immature coniferous (IC) forests. Prior to measure, soils were pre-incubated for 3 days at $25^{\circ}C$ and 60% of maximum water holding capacity (WHC). Samples of gasses were collected with 0, 2, and 4 h interval after the beginning of the measurement at soil temperatures of 5, 15, 25, and $35^{\circ}C$ (at 60% WHC). Air samples were collected using a syringe attached to the cap of closed bottles that contained the soil samples. The $CO_2$ concentration of each gas sample was measured by gas chromatography. Rs was strongly correlated with soil temperature (r, 0.93 to 0.96; P < 0.001). For MD, MC, ID, and IC soils taken from 0-5 cm below the surface, exponential functions explained 90%, 82%, 92%, and 86% of the respective data plots. The temperature and Rs data for soil taken from 5-10 cm beneath the surface at MD, MC, ID, and IC sites also closely fit exponential functions, with 83%, 95%, 87%, and 89% of the data points, respectively, fitting an exponential curve. The soil organic content in mature forests was significantly higher than in soils from immature forests (P < 0.001 at 0-5 cm and P < 0.005 at 5-10 cm) and surface layer (P = 0.04 at 0-5 cm and P = 0.12). High soil organic matter content is clearly associated with high Rs, especially in the surface layer. We determined that the incubation method used in this study have the possibility for comprehending complex characteristic of Rs.

지표면 토양의 유효 수분함유량 산출에 관한 연구 (Evaluation of Effective Soil Moisture From Natural Soil Surfaces)

  • 오이석
    • 대한원격탐사학회지
    • /
    • 제11권3호
    • /
    • pp.117-127
    • /
    • 1995
  • 본 논문에서는 지표면의 유효 토양 수분함유량의 적정한 값을 추출하는 몇가지 방법을 소개하고 그 방법들을 서로 비교하였다. 지표면의 꼭대기 층은 비교적 말라 있고, 밑바닥 층은 젖 어 있어서 종단면으로 봤을 때 토양은 대개 균일하지 않은 수분함유량 분포를 갖는다. 이러한 비 균일적인 토양의 수분함유량을 봤을 때 토양은 대개 균일하지 않은 수분함유량 분포를 갖는다. 이러한 비균일적인 토양의 수분함유량을 어떤 평균적인 값으로 나타낸 것이 유효 수분함유량이 다. 이 유효 수분함유량을 구하는 간단한 방법 중의 하나는 층층이 측정한 수분함유량의 산술 평 균을 취하는 것이다. 다른 방법으로는 균일한 지표면과 비균일한 지표면의 침투 두께를 각각 계 산하고 비교하여 유효 수분함유량을 얻는 방법이 있다. 또 다른 방법은 균일 지표면과 비균일 지 표면에서 각각 반사율을 계산하고 비교하여 유효 수분함유량을 구한다. 이러한 방법들이 서로 비 교되었고, 특히 반사율 적용법이 좀 더 자세하게 연구되었는데 그 이유는 실제 레이다 산란은 전 파의 침투보다는 반사에 의해 좌우되기 때문이다.

균질 지반과 비균질 지반에서 강관 모형말뚝의 수평거동 특성에 관한 모형실험 (Model Tests on the Characteristics of Lateral Behavior of Steel Pipe Pile in Homogeneous and Nonhomogeneous Soil Conditions)

  • 김병탁;김영수
    • 한국지반공학회지:지반
    • /
    • 제14권6호
    • /
    • pp.153-166
    • /
    • 1998
  • 본 논문은 균질 및 비균질 낙동강 사질토 지반에서 수평 및 경사하중을 받은 강관 말뚝의 수평거동에 대한 모형실험 결과들을 고찰하였다. 비균질 지반은 상부와 하부층의 2개층으로 이루졌다. 본 연구의 목적은 말뚝의 수평거동에 대한 경사하중$(Q_\beta)$, 말뚝 근입길이에 대한 하부지반의 높이비 (H/S), 그리고 상.하부지반의 지반반력계수비$(E_{h1}E_{h2})$의 영향에 관하여 실험적인 연구를 수행하고 이러한 영향들을 정량화 할 수 있는 실험결과를 얻었다. 모형실험 결과들에 의하면, 비균질 지반에서 수평거동은 다른 인자들보다 $E_{h1}E_{h2}$에 더 의존하는 것으로 나타났다. 균질지반에 대한 비균질 지반의 수평변위비$(y_{H/L}/y_{H/L=0}$)와 말뚝 근입길이에 대한 하부지반의 높이비(H/L)의 관계는 지수 함수식으로 회귀분석 되었다. 경사하중을 받는 경우의 휨 모멘트-깊이 관계는 수평하중을 받는 말뚝의 경우와 상이하게 나타났으며, 상대밀도 90%에서는 최대 휨모멘트 발생깊이는 수평하중을 받는 경우보다 약 70% 깊어졌다.

  • PDF