• 제목/요약/키워드: Soil layer

검색결과 1,787건 처리시간 0.025초

남산자연공원의 식물군락분류와 토양환경 (Syntaxonomy and Soil Condition of Mt. Nam nature park)

  • 이호준;전영문;정흥락;길지현;홍문표;김용옥;장일도
    • The Korean Journal of Ecology
    • /
    • 제21권5_3호
    • /
    • pp.633-648
    • /
    • 1998
  • The forest vegetation of Mt. Nam Nature Park was investigated according to the phytosociological method. The vegetation in this study area was classified into 5 communities Quercus mongolica (Acer pseudo-sieboldianum subcommunity, Prunus sargentii subcommunity), P. sargentii, Pinus densiflora (Q. mongolica subcommunity, Stephanandra incisa subcommunity) and 5 afforestations Robinia pseudo-acacia, Populus tomentoglandulosa, P. koraiensis, P. rigida, Metasequoia glyptostroboides. Generally, were P. densiflora forest at the Southern slope and Q. mongolica forest at Northern slope dominant species from the top zone standing in Namsan tower. The dominance sequences on each stratum determined by the R-NCD (Relative net Contribution Degree) showed Q. mongolica and P. densiflora in tree-1 layer, Styrax japonica and Corbus alnifolia in tree-2 layer, S. incisa, S. japonica and rhododendron schlipenbachii in shrub layer, and Oplismenus undulatifolius, Eupatorium rugosum, Parthenocissus tricuspidata and Disporum smilacinum in herb layer. The soil was analyzed to investigate the soil conditions and fertility. The pHs of soil collected in each sites appeared strongly acidic with the range of 4.34 to 5.01 each community and especially, was the lowest value 4.34 in P. rigida afforestation. And Q. mongolica-P. sargentii subcommunity was distributed at the area with relative mesic conditions and high organic matters. Nitrogen was highest at P. sargentii community, phosphate at P. densiflora-S. incisa subcommunity, calcium, potasium and magnesium of exchangeble cation at R. pseudo-acacia afforestation. Especially, the level of calcium in R. pseudo-acacia afforestation, P. koraiensis afforestation and P. densiflora community was shown the highest (0.38-1.48 mg/100g) compared to other communities, because of the influence of lime fertilization used to improve acidic soil.

  • PDF

Reinforcement effect of micropile and bearing characteristics of micropiled raft according to the cohesion of soil and stiffness of pile

  • KangIL Lee;MuYeun Kim;TaeHyun Hwang
    • Geomechanics and Engineering
    • /
    • 제37권5호
    • /
    • pp.511-525
    • /
    • 2024
  • Micropiled raft has been used to support the existing and new structures or to provide the seismic reinforcement of foundation systems. Recently, research on micropile or micropiled raft has been actively conducted as the usage of micropile has increased, and the reinforcement effect of pile for the raft, the pile installation methods, and methods for calculating the bearing capacity of micropiled raft have been proposed. In addition, existing research results show that the behavior of this foundation system is different depending on the pile conditions and can be greatly influenced by the characteristics of the upper or lower ground depending on the conditions of pile. In other words, considering that the micropile is a friction pile, it can be predicted that the reinforcing effect of micropile for the raft and the bearing capacity of micropiled raft may depend on the cohesion of upper soil layer depending on the pile conditions. However, existing studies have limitations in that they were conducted without taking this into account. However, existing studies have limitations as they have been conducted without considering these characteristics. Accordingly, this study investigated the reinforcing effect of micropile and the bearing characteristics of micropiled raft by varying the cohesion of upper soil layer and the stiffness of pile which affect the behavior of micropiled raft. In this results, the reinforcing effect of micropile on the raft also increased as the cohesion of soil layer increased, but the reinforcing effect of pile was more effective in ground conditions with decreased the cohesion. In addition, the relationship between the axial stiffness of micropile and the bearing capacity of micropiled raft was found to be a logarithmic linear relationship. It was found that the reinforcing effect of micropile can increase the bearing capacity of raft by 1.33~ 3.72 times depending on the cohesion of soil layer and the rigidity of pile.

Evaluation of extension in service life and layer thickness reduction of stabilized flexible pavement

  • Nagrale, Prashant P.;Patil, Atulya
    • Advances in Computational Design
    • /
    • 제3권2호
    • /
    • pp.201-212
    • /
    • 2018
  • Decrease in availability of suitable subbase and base course materials for highway construction leads to a search for economic method of converting locally available troublesome soil to suitable one for highway construction. Present study insights on evaluation of benefits of stabilization of subgrade soils in term of extension in service life (TBR) and layer thickness reduction (LTR). Laboratory investigation consisting of Atterberg limit, Compaction, California Bearing Ratio, unconfined compressive strength and triaxial shear strength tests were carried out on two types of soil for varying percentages of stabilizers. Vertical compressive strains at the top of unstabilized and stabilized subgrade soils were found out by elastoplastic finite element analysis using commercial software ANSYS. The values of vertical compressive strains at the top of unstabilized and stabilized subgrade, were further used to estimate layer thickness reduction or extension in service life of the pavement due to stabilization. Finite element modeling of the flexible pavement layered structure provides modern technology and sophisticated characterization of materials that can be accommodated in the analysis and enhances the reliability for the prediction of pavement response for improved design methodology. If the pavement section is kept same for unstabilized and stabilized subgrade soils, pavement resting on lime, fly ash and fiber stabilized subgrade soil B will have service life 2.84, 1.84 and 1.67 times than that of unstabilized pavement respectively. The flexible pavement resting on stabilized subgrade is beneficial in reducing the construction material. Actual savings would depend on the option exercised by the designer for reducing the thickness of an individual layer.

안정화 처리된 폐광산 토양의 생태기능상태 평가를 위한 효소활성도 및 비소호흡유전자의 적용 (Application of Enzymatic Activity and Arsenic Respiratory Gene Quantification to Evaluate the Ecological Functional State of Stabilized Soils Nearby Closed Mines)

  • 박재은;이병태;이상우;김순오;손아정
    • 대한환경공학회지
    • /
    • 제39권5호
    • /
    • pp.265-276
    • /
    • 2017
  • 폐광산은 방치된 광미 등으로 인하여 주변환경에 복합적인 중금속 오염을 야기한다. 이를 방지하기 위하여 국내에서는 1990년대 중반부터 석회석 등의 안정화제와 복토를 이용한 안정화 공법을 기반으로 토양개량사업이 시행 중이다. 복원된 토양의 상부에서는 작물의 재배로 인해 중금속이 고정된 안정화 층이 지화학적 변화를 겪게 되며 이에 따른 중금속의 용출 및 이동이 가능하므로 토양개량사업을 마친 토양에 대한 질 평가 등의 사후 관리는 반드시 필요하다. 토양의 질 평가를 하기 위해서는 이화학적 분석 또는 생물학적인 분석을 개별적으로 하기보다는 이들을 결합한 종합적인 분석이 필요하며 이를 통해 토양의 생태기능상태(ecological functional state)를 평가할 수 있다. 본 연구에서는 대상시료로 경상북도 봉화군 풍정 광산, 전라남도 광양시 점동 광산, 충청남도 서산시 서성 광산 인근 안정화 처리 토양과 안정화 처리가 되지 않은 오염, 비오염 토양을 선정하였다. 토양의 이화학적 성질인 pH, CEC, LOI와 중금속 농도를 측정하였고, 미생물 효소활성도와 비소환원유전자를 정량하였다. 다변량 통계분석을 바탕으로 모든 데이터를 분석하여 토양 생태기능상태를 평가하였다. 안정화 심도 토양과 상부복토, 하부오염토 간의 상관관계를 확인한 결과, 안정화 심도 토양에서 중금속의 농도가 높게 측정되었다. 그리고 풍정광산에서는 안정화 처리 심도 토양이 하부오염토와 유사한 특성을, 점동, 서성 광산에서는 안정화 심도 토양이 상부복토와 유사한 특성을 나타내었는데 이는 점동, 서성 광산 주변 상부복토의 생태기능상태가 좋지 않을 수 있음을 시사한다.

태양열을 이용한 뿌리혹선충 (Meloidogyne spp.) 방제효과 (Effect of Solarization for Control of Root-Knot Nematode (Meloidogyne spp.))

  • 김지인;한상찬
    • 한국응용곤충학회지
    • /
    • 제27권1호
    • /
    • pp.1-5
    • /
    • 1988
  • 시설원예 재배지의 viny1 house에서 문제가 예견되는 뿌리혹은선충(Meloidogyne spp.)을 방제하기 위하여 태양열을 이용한 토양선독을 8월 1일부터 8월31일 까지 실시한 결과는 다음과 같다. 뿌리혹은선충은 $40^{\circ}C$ 체온기내에서 48시간 이내에 모두 사멸되었다. 왜도 $30^{\circ}C$ 때 이중으로 비닐피복된 지표하 5cm 깊이에서의 체구지온은 $48.7^{\circ}C$, 15cm깊이에서는 $45.2^{\circ}C$, 30cm 깊이에서는 $36.0^{\circ}C$에 달하였다. 지중온도가 $40^{\circ}C$이상 상승한 일수는 1986년 8월 5cm 깊이에서 17일, 15cm깊이에서 14일간이였다. 비닐 이중피복에 따른 뿌리혹선충의 방제효과를 보면 지표하 5cm 깊이에서 뿌리혹선충은 완전 사멸되었으며 15cm 깊이에서 생존 선충수는 1마리, 30cm 깊이에서는 2마리로써 이중피복에 의한 사멸전과는 대단히 높았다.

  • PDF

Seismic vulnerability of reinforced concrete building structures founded on an XPS layer

  • Koren, David;Kilar, Vojko
    • Earthquakes and Structures
    • /
    • 제10권4호
    • /
    • pp.939-963
    • /
    • 2016
  • According to the new directives about the rational and efficient use of energy, thermal bridges in buildings have to be avoided, and the thermal insulation (TI) layer should run without interruptions all around the building - even under its foundations. The paper deals with the seismic response of multi-storeyed reinforced concrete (RC) frame building structures founded on an extruded polystyrene (XPS) layer placed beneath the foundation slab. The purpose of the paper is to elucidate the problem of buildings founded on a TI layer from the seismic resistance point of view, to assess the seismic behaviour of such buildings, and to search for the critical parameters which can affect the structural and XPS layer response. Nonlinear dynamic and static analyses were performed, and the seismic response of fixed-base (FB) and thermally insulated (TI) variants of nonlinear RC building models were compared. Soil-structure interaction was also taken into account for different types of soil. The results showed that the use of a TI layer beneath the foundation slab of a superstructure generally induces a higher peak response compared to that of a corresponding system without TI beneath the foundation slab. In the case of stiff structures located on firm soil, amplification of the response might be substantial and could result in exceedance of the superstructure's moment-rotation plastic hinge capacities or allowable lateral roof and interstorey drift displacements. In the case of heavier, slenderer, and higher buildings subjected to stronger seismic excitations, the overall response is governed by the rocking mode of oscillation, and as a consequence the compressive strength of the XPS could be insufficient. On the other hand, in the case of low-rise and light-weight buildings, the friction capacity between the layers of the applied TI foundation set might be exceeded so that sliding could occur.

울릉도 우산고로쇠나무 군락의 식생구조와 토양환경 (Vegetation Structure and Soil Condition of Acer okamotoanum Communities in Ulleung Island)

  • 권수덕;김종갑;문현식
    • 농업생명과학연구
    • /
    • 제44권5호
    • /
    • pp.15-22
    • /
    • 2010
  • 울릉도 자생 우산고로쇠나무군락의 합리적인 관리를 위한 기초정보를 제공하기 위하여 식생구조와 토양환경을 분석하였다. 층위별 중요치는 상층에서는 우산고로쇠나무가 120.7, 중층과 하층에서는 동백나무의 중요치가 각각 61.8, 15.7로 가장 높게 나타났다. 우산고로쇠나무의 중층과 하층에서의 중요치는 각각 37.5, 2.6이었다. 하층에서는 산림청 지정 취약종인 회솔나무가 출현하였다. 층위별 종다양도는 상층 0.674, 중층 0.947, 하층 1.312, 균재도는 상층 0.706, 중층 0.805, 하층 0.938이었다. 우산고로쇠나무 군락의 토양 pH는 5.79, 유기물함량은 7.2%, 전질소 함량은 0.33%, 유효인산 함량은 51.1ppm로 나타났다.

지리산 세석지역 구상나무 임분의 생태적 특성 (Ecological Characteristics of Abies koreana Forest on Seseok in Mt. Jiri)

  • 조민기;정재민;김태운;김충열;노일;문현식
    • 한국기후변화학회지
    • /
    • 제6권4호
    • /
    • pp.379-388
    • /
    • 2015
  • The purpose of the this study was to provide basic data on reasonable management for Abies koreana in Mt. Jiri through analysis the ecological characteristics of Abies koreana forests on Seseok. Due to low soil pH (4.26), high organic matter (10.5%) and total N (0.32%), the soil properties of A. koreana forest on Seseok are different from those of other forest soil in Korea. According to the result of importance value analysis, A. koreana (70.5) for tree layer, A. koreana (37.6) and Rhododendron schlippenbachii (20.8) for subtree layer and A. koreana (12.6), Sasa borealis (11.5) and Acer pseudosieboldianum (11.2) for shrub layer were high, respectively. The species diversity of Shannon was 0.425 for tree layer, 0.869 for subtree layer and 1.320 for shrub layer. Evenness and dominance for all layers ranged from 0.365 to 0.894 and 0.187 to 0.635, respectively. Height growth according to DBH of A. koreana on Seseok was relative high. Annual mean tree ring growth of A. koreana showed up 1.372, 1.557 and 1.483 mm/yr for small, middle and large diameter tree, respectively. Considering the importance value, distribution of seedling, height growth and ring growth, A. koreana forest on Seseok in Mt. Jiri will be maintained as the major population from now on.

사질토 지반의 상대다짐도 및 토층에 따른 연직지중응력 분포 특성 (Characteristics of Vertical Stress Distribution in Sandy Soil According to the Relative Compaction and Composition of the Soil Layer)

  • 남효석;이상호
    • 한국농공학회논문집
    • /
    • 제52권2호
    • /
    • pp.43-50
    • /
    • 2010
  • This study was carried out to evaluate the vertical stress properties in sandy soil according to changes of foundation condition in soil bin compacted three layers. The following conclusions and comparisons have been made based on careful analysis from theoretical and experimental methods. : When sandy soil subjected to circular uniform load, the vertical stress increments ($\Delta\sigma_z$) was increased as load increasing, the maximum values of $\Delta\sigma_z$ was achieved at the point loading axis, and $\Delta\sigma_z$ was not shown over at a distance of three times of loading plate width (B). The vertical stress increments were achieved largely at 80 % relative compaction (Rc) compared to 95 % relative compaction due to stress concentration in sandy soil. When sandy soil subjected to circular uniform load, the $\Delta\sigma_z$ differences between theoretical and experimental values as load increased were more increased and its maximum differences were achieved at stress axis. When gravel surface macadamized over sandy soil subjected to load, the $\Delta\sigma_z$ was concentrated to load axis as load increasing, so that macadamization will be decreased load transmission.

구조물-지반 상호작용 영향을 고려한 새로운 지반계수 평가방법에 대한 제안 (Proposed New Evaluation Method of the Site Coefficients Considering the Effects of the Structure-Soil Interaction)

  • 김용석
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.327-336
    • /
    • 2006
  • Site coefficients in IBC and KBC codes have some limits to predict the rational seismic responses of a structure, because they consider only the effect of the soil amplification without the effects of the structure-soil interaction. In this study, upper and lower limits of site coefficients are estimated through the pseudo 3-D elastic seismic response analyses of structures built on linear or nonlinear soil layers considering the structure-soil interaction effects. Soil characteristics of site classes of A, B, and C were assumed to be linear, and those of site classes of D and E were done to be nonlinear and the Ramberg-Osgood model was used to evaluate shear modulus and damping ratio of a soil layer depending on the shear wave velocity of a soil layer. Seismic analyses were performed with 12 weak or moderate earthquake records, scaled the peak acceleration to 0.1g or 0.2g and deconvoluted as earthquake records at the bedrock 30m beneath the outcrop. With the study results of the elastic seismic response analyses of structures, new standard response spectrum and upper and lower limits of the site coefficients of Fa and Fv at the short period range and the period of 1 second are suggested Including the structure-soil interaction effects.

  • PDF