• 제목/요약/키워드: Soil inversion

검색결과 65건 처리시간 0.025초

토양의 제자리 반전을 위한 몰드보드 플라우의 개발 (Development of a Moldboard Plow to Invert Furrow Slice at the Same Position)

  • 이규승;박원엽;권병기
    • Journal of Biosystems Engineering
    • /
    • 제29권1호
    • /
    • pp.9-20
    • /
    • 2004
  • On the basis of design theory of soil inversion, two types of moldboard plow with secondary soil mover was designed and constructed to invert furrow slice at same position with furrow bottom. A series of soil bin experiment was carried to investigate the performance of prototypes. First prototype of new concept plow showed two kinds of problems during the preliminary experiment. For the plowing depth of 6cut the prototype did not invert the furrow slice, instead it just cut furrow bottom and the furrow slice returned to the original position. For the plowing depth of 8cm, there was soil clogging problem at the rear part of plow. From the above results it was concluded that the first prototype can not be used for the inversion of furrow slice at same position with furrow bottom. Second prototype could invert furrow slice at the same position with furrow bottom, but the performance was affected by soil moisture content soil hardness and plowing speed very much. For the higher soil moisture content, for the higher soil hardness and higher plowing speed, the prototype showed higher soil inversion performance. For the second prototype the inversion ratio was almost 100%, inversion angle was in the range of 90 to 100 degree and side displacement was less than 4 cm. But the furrow slice was not continuous, it was cut in the length of 30 to 40 cm. The reason why the furrow slice was cut in that length is blamed for the design of moldboard surface. The specific draft of prototype was in the range of 37.24 kN/㎡ to 42.14 kN/㎡ this value is a little higher than that of the conventional plow, or from 30.38 kN/㎡ to 33.32 kN/㎡. But the difference was not so big. The inversion performance of the second prototype for the field experiment was much better than that of soil bin experiment due to the better soil and operational conditions. Sticky and compacted soil conditions, and higher plowing speed was suitable for the plowing operation of the second prototype

토양 표면에서의 편파별 후방 산란 계수 측정을 통한 산란 모델과 Inversion 알고리즘의 검증 (Verification of Surface Scattering Models and Inversion Algorithms with Measurements of Polarimetric Backscattering Coefficients of a Bare Soil Surface)

  • 홍진영;정승건;오이석
    • 한국전자파학회논문지
    • /
    • 제17권12호
    • /
    • pp.1172-1180
    • /
    • 2006
  • 본 논문은 풀이 없는 지표면에서의 후방 산란 계수(backscattering coefficients)를 측정하고, 이 측정 결과를 이용하여 여러 표면 산란 모델들과 inversion 알고리즘의 성능을 비교, 분석하였다. 우선, R-밴드 주파수($1.7{\sim}2.0GHz$)에서 완전 편파 scatterometer를 이용하여 풀 층이 없는 지표면에 대해서 편파별로 후방 산란 계수를 측정하고, 동시에 수분 함유량과 표면 거칠기를 측정하였다. 그런 다음 측정된 지표면 변수들을 표면 산란 모델들에 입력하여 후방 산란 계수를 계산하고, 이 계산 결과를 측정 결과와 비교 분석하였다. 또한, inversion 알고리즘들을 적용하여 측정된 편파별 후방 산란 계수로부터 수분 함유량을 추출하고, 이 추출된 수분 함유량이 현장에서 측정한 수분 함유량과 잘 맞는지 여부를 확인하였다. 표면 산란 모델들 중에서 정확도가 높은 모델들을 제시하였으며, inversion 모델들의 계산 결과도 나타내었다.

Radar Remote Sensing of Soil Moisture and Surface Roughness for Vegetated Surfaces

  • Oh, Yi-Sok
    • 대한원격탐사학회지
    • /
    • 제24권5호
    • /
    • pp.427-436
    • /
    • 2008
  • This paper presents radar remote sensing of soil moisture and surface roughness for vegetated surfaces. A precise volume scattering model for a vegetated surface is derived based on the first-order radiative transfer technique. At first, the scattering mechanisms of the scattering model are analyzed for various conditions of the vegetation canopies. Then, the scattering model is simplified step by step for developing an appropriate inversion algorithm. For verifying the scattering model and the inversion algorithm, the polarimetric backscattering coefficients at 1.85 GHz, as well as the ground truth data, of a tall-grass field are measured for various soil moisture conditions. The genetic algorithm is employed in the inversion algorithm for retrieving soil moisture and surface roughness from the radar measurements. It is found that the scattering model agrees quite well with the measurements. It is also found that the retrieved soil moisture and surface roughness parameters agree well with the field-measured ground truth data.

전기비저항 모니터링 자료를 이용한 연약지반 평가를 위한 역산기법 적용 연구 (Application of Inversion Methods to Evaluate the State of Soft Soil using Electrical Resistivity Monitoring Data)

  • 지윤수;오석훈;임은상
    • 지구물리와물리탐사
    • /
    • 제17권2호
    • /
    • pp.104-113
    • /
    • 2014
  • 간척지의 연약지반 평가를 위해 전기비저항 모니터링을 실시하여 물리탐사기법의 적용성을 알아보고자 총 3개월에 걸쳐 전기비저항 모니터링 자료를 획득하였고, 이 자료들을 독립역산, 시간경과 역산, 4D 역산법으로 해석을 실시하였다. 본 연구에서는 각 역산 방법들의 비교를 통해 연약지반의 변화 특성을 잘 나타낼 수 있는 역산방법을 파악하고자 하였다. 또한, 시추자료와 콘 관입시험(Cone Penetration Test; CPT) 자료를 이용하여 각 역산방법들이 기반암과 연약지반을 명확히 구분 하는지 알아보았다. 시간경과 역산의 경우 독립역산 보다 역산 잡음이 감소하여 연약지반을 잘 반영한다는 것을 알 수 있었다. 4D 역산은 3개월 데이터 보다 장기의 데이터를 사용하면 시간경과 역산법보다 효율적인 해석방법이 될 수 있음을 파악하였다. 연약지반에서의 전기비저항 모니터링은 지반의 시공간적 전기적 상태를 연속적으로 분석 할 수 있는 유용한 방법임을 확인하였다.

Tillage Operational Analysis Based on Soil Moisture Content, Machine Speed, and Disc Space of Compact Disc Harrow

  • Okyere, Frank Gyan;Moon, Byeong Eun;Qasim, Waqas;Basak, Jayanta Kumar;Kahn, Fawad;Kang, Dae Sik;Yoon, Yong Cheol;Kim, Hyeon Tae
    • Journal of Biosystems Engineering
    • /
    • 제43권3호
    • /
    • pp.161-172
    • /
    • 2018
  • Purpose: During tillage operations, the selection of a working machine (tool) depends on the soil conditions as well as the type of tillage operation to be performed. The goal of this research was to ascertain the effects of varying working machine parameters of a compact disc harrow on tillage operations under various soil moisture content (SMC) conditions. Methods: The working machine parameters were the disc spacing and machine speed. The tillage parameters under investigation were the soil inversion ratio (SIR), tillage cutting depth (TCD), and soil clod breakage ratio (SCB). To determine the SIR, the areas of the white regions before and after tillage were obtained. The ratio of the difference of the areas of the white regions before and after tillage to the area of the white regions before tillage was considered as the SIR. The SCB was obtained as the ratio of the weight of soil clods after sieving with a mesh size of <0.02 m to the total weight of the soil clods before sieving. The soil TCD was measured using a tape measure at random points after the tillage operation. The resulting data were statistically analyzed in a one-way analysis of variance. Results: The highest soil inversion was achieved when the machine speed was 0.2 m/s with the disc spaced at 0.2 m in the 16.5% SMC. At a 0.4-m/s machine speed and 0.3-m disc spacing the highest soil breakage was achieved in the 26.5% SMC. The highest TCD was achieved at a 0.2-m/s machine speed and 0.2-m disc spacing in the 16.5% SMC. Conclusions: It was concluded that varying the working machine parameters, such as the disc spacing and machine speed, could significantly affect the soil inversion and soil clod breakage; however, it had no significant impact on the TCD.

Evaluation and Modification on the New Concept Plow

  • Shoji, Koichi;Namikawa, Kiyosi;Umeda, Mikio
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.1026-1035
    • /
    • 1993
  • Further evaluation and modification were done on the new concepts plow (frontal plow), a plow which inverts the soil furrow without lateral displacement . First, kinematics of soil cutting section was analyzed and an experiment was conducted to report draft and power requirement. Second, function of main moldboards was examined and modification was made. As a result of the modification , force applied to the moldboard was reduced, but the furrow inversion became less stable.

  • PDF

Comparison of Tillage and Loads Characteristics of Three Types of Rotavators: Rotary-type, Crank-type, and Plow-type

  • Kim, Myoung-Ho;Nam, Ju-Seok;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • 제38권2호
    • /
    • pp.73-80
    • /
    • 2013
  • Purpose: This study was conducted to compare tillage and loads characteristics of three types of rotavators in farmland working condition of Korea. Methods: Tillage operations using three types of rotavators, i.e. rotary-type, crank-type and plow-type, were carried out in a dry field of Korea. The same prime mover tractor was used for driving three types of rotavators, and under several operational conditions, tillage characteristics such as actual working speed, rotavating depth, rotavating width, actual field capacity, flow of tilled soil, soil inversion ratio, and pulverizing ratio were measured. In addition, loads characteristics like torque and required power of Power Take-Off (PTO) shaft were calculated. Results: The average rotavating depth was smaller than the nominal value for all rotavators, and the difference was the greatest in the plow-type rotavator. Nevertheless, the plow-type rotavator showed the largest rotavating depth. The rotavating width was the same as the nominal value of all rotavators. The flow of tilled soil at the same operational conditions was the greatest in the plow-type rotavator and was the smallest in the rotary-type rotavator. In the most commonly used gear conditions of L2 and L3, the average soil pulverizing ratio was the greatest in the rotary-type rotavator, and followed by crank-type and plow-type rotavators in order. In the gear L2 and L3, the plow-type rotavator also had the lowest average soil inversion ratio while the rotary-type and crank-type rotavators had the same soil inversion ratio each other. The average torque and power of PTO shaft in the gear L2 and L3 were the highest in the plow-type rotavator. The load spectra of PTO shaft applying rain flow counting method and Smith-Waston-Topper equation to the measured torque showed that the modified torque amplitude was the greatest in the crank-type rotavator. This may come from the large torque fluctuation of crank-type rotavator during tillage operations. Conclusions: The three types of rotavators had different tillage and loads characteristics. The plow-type rotavator had the deepest rotavating depth, the smallest soil inversion ratio, the largest soil pulverizing ratio and required PTO power. Also, the crank-type rotavator showed a large torque fluctuation because of their unique operational mechanism. This study will help the farmers choose a suitable type of rotavator for effective tillage operations.

금강 하구 천해성 퇴적층의 연약지반에 관한 연구: 표면파 역산에 의한 S파 속도구조와 해상도 (A Study on the Soft Reclaimed Lands Composed of Shallow Ocean Sediments in Keum River Estuary: Two Dimensional S Wave Velocity and Resolution Obtained by Inverting Surface Waves)

  • 정희옥
    • 한국지구과학회지
    • /
    • 제22권3호
    • /
    • pp.179-185
    • /
    • 2001
  • 토양이나 암반의 물성을 조사하기 위하여 시추공조사가 흔히 이루어진다. 그러나 시추조사의 결과는 불연속적이고 시추공과 시추공 사이의 물성은 두 시추공의 조사결과를 내삽하여 구할 수 밖 에 없다. 그러나 이러한 내삽법을 이용한 해석은 지반의 수평적 변화가 심하지 않은 경우에만 가능하다. 연약지반의 연속적인 2차원 S파 속도구조를 구하기 위하여 표면파 역산 방법을 사용하였다. 역산 결과를 해석하기 위하여 역산 결과의 해상도를 역산 결과와함께 제시하였다.

  • PDF

현장시험을 통해 지반의 비선형 전단탄성계수를 산정하기 위한 역해석방법의 개발 (Development of Inversion Analysis Framework to Determine Nonlinear Shear Moduli of Soils In Situ)

  • 안재훈
    • 한국방재학회 논문집
    • /
    • 제8권3호
    • /
    • pp.87-93
    • /
    • 2008
  • 지반의 비선형 전단탄성계수를 결정하기 위한 현장시험에서는, 먼저 지반과 원형기초에 지오폰을 설치하고, 기초에 대형 진동발생장치를 이용하여 진동하중을 가한다. 이 때, 지오폰으로부터 지반과 기초의 거동을 측정하고, 본 거동을 분석하여 전단탄성 계수와 해당 전단변형률을 결정할 수 있다. 본 논문에서는 현장시험결과로부터 지반의 선형, 비선형 전단탄성계수를 결정하기위한 역해석 과정의 필요성과 그 개발에 초점을 맞추었다. 제안된 역해석 과정은 비선형 최소자승법을 근간으로 하며, 거동이 계측되지 않는 곳의 지반의 비선형성을 고려하기 위하여 이중 반복루프를 사용하였다. 역해석 과정의 적용성을 검토하기 위하여 일련의 수치해석을 수행하였으며, 또한 역해석 적용의 예제를 보였다. 제안된 방법은 현장지반의 전단탄성계수 분포의 변화가 극심하지 않은 경우에는 전반적으로 우수한 적용성을 보이지만, 해석대상 지반의 전단파속도 분포가 역해석의 정확성에 영향을 수 있으므로, 예비 역해석을 통해 산출될 오차를 정량화 하는 것이 필요하다.

Retrieval of surface parameters in tidal flats using radar backscattering model and multi-frequency SAR data

  • Choe, Byung-Hun;Kim, Duk-Jin
    • 대한원격탐사학회지
    • /
    • 제27권3호
    • /
    • pp.225-234
    • /
    • 2011
  • This study proposes an inversion algorithm to extract the surface parameters, such as surface roughness and soil moisture contents, using multi-frequency SAR data. The study areas include the tidal flats of Jebu Island and the reclaimed lands of Hwaong district on the western coasts of the Korean peninsula. SAR data of three frequencies were accordingly calibrated to provide precise backscattering coefficients through absolute radiometric calibration. The root mean square (RMS) height and the correlation length, which can describe the surface roughness, were extracted from the backscattering coefficients using the inversion of the Integral Equation Method (IEM). The IEM model was appropriately modified to accommodate the environmental conditions of tidal flats. Volumetric soil moisture was also simultaneously extracted from the dielectric constant using the empirical model, which define the relations between volumetric soil moistures and dielectric constants. The results obtained from the proposed algorithm were verified with the in-situ measurements, and we confirmed that multi-frequency SAR observations combined with the surface scattering model for tidal flats can be used to quantitatively retrieve the geophysical surface parameters in tidal flats.