• Title/Summary/Keyword: Soil integrated management

Search Result 136, Processing Time 0.03 seconds

A Study on the Landscape Planning Evaluation on Apartment Artificial Ground (아파트 단지 인공지반의 계획적 평가에 관한 연구)

  • 김유일;오정학;김인혜;윤홍범
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.26 no.3
    • /
    • pp.297-311
    • /
    • 1998
  • Landscaping on artificial ground is currently served as a means to imposing a greenery benefit on high-density and high-rise apartment sites. It functions as a sub-hierarchy in apartment planning such as ornamental element from the past. Major parking space tends to be allocated on the basement area in response to the required parking regulation. Therefore, competitive relatioinship between the parking and greenery space I limited outdoor of apartments leads to the development planning strategy and technology of artificial ground. This study aims at evaluating landscape planning on artificial ground of apartment complex through several approaches such as site survey, plan drawing analysis, and interview with related field experts. 15 survey apartment sites including Bundang Model, Shindaebang-dong, Pyoungchon Hyundai Apartments have been selected for conducting the research. Main results of this study are summarized below : First, scattering allocation of artificial ground between apartment building units is a dominant plan layout type among the survey sites. Even though unifying allocation type has an advantage to maximize underground parking space, it has a difficulty in maintaining proper soil ground base for nurturing plants. Therefore, underground parking space should be planned by unifying allocation type placed separately from apartment units. This plan type can provide a balanced planting between soil and artificial ground on surface level. Second, It is strongly recommended to integrate the whole planting base which involves architectural structure, drainage, and water proofing above the planting design. When considering that process as a professional subject dealing with natural material such as trees and shrubs, those tasks should be directed by landscape architectural divison and landscape architect. And planting area for artificial ground has to be specified in initial phase of architectural design. This step provides an opportunity to make a proper decision on structural load, drainage, and water proof design as an integrated part of the management.

  • PDF

Impacts of Seasonal Pumping on Stream Depletion (계절양수가 하천건천화에 미치는 영향)

  • Lee, Hyeonju;Koo, Min-Ho;Lim, Jinsil;Yoo, Byung-Ho;Kim, Yongcheol
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.1
    • /
    • pp.61-71
    • /
    • 2016
  • Visual MODFLOW was used for quantifying stream-aquifer interactions caused by seasonal groundwater pumping. A hypothetical conceptual model was assumed to represent a stream-aquifer system commonly found in Korea. The model considered a two-layered aquifer with the upper alluvium and the lower bedrock and a stream showing seasonal water level fluctuations. Our results show that seasonal variation of the stream depletion rate (SDR) as well as the groundwater depletion depends on the stream depletion factor (SDF), which is determined by aquifer parameters and the distance from the pumping well to the stream. For pumping wells with large SDF, groundwater was considerably depleted for a long time of years and the streamflow decreased throughout the whole year. The impacts of return flow were also examined by recalculating SDR with an assumed ratio of immediate irrigation return flow to the stream. Return flow over 50% of pumping rate could increase the streamflow during the period of seasonal pumping. The model also showed that SDR was affected by both the conductance between the aquifer and the stream bed and screen depths of the pumping well. Our results can be used for preliminary assessment of water budget analysis aimed to plan an integrated management of water resources in riparian areas threatened by heavy pumping.

Hydrogeochemistry and Microbial Community Structure of Groundwater in an Agricultural Area (농업지역 지하수의 수리지화학 및 미생물 군집 구조 분석)

  • Kim, Dong-Hun;Oh, Yong Hwa;Lee, Bong-Joo;Lee, Jung-Yun
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.2
    • /
    • pp.61-75
    • /
    • 2022
  • This study evaluated the potential threat of agricultural and human activities to groundwater in the Noseong stream watershed, a typical agricultural area, through hydrogeochemical characteristics and microbial community analyses. The groundwater in the study area was Ca-SO4 and Ca-HCO3 types alluvial aquifer mainly used for agricultural and living purposes, and contained high levels of NO3- and Cl- ions generated from anthropogenic sources such as fertilizer, livestock wastewater, and domestic sewage. Proteobacteria was most abundant in all samples with an average of 46.1% while Actinobacteria, Bacteroidetes, and Cyanobacteria were dominant on an occasional basis. The prevalence of aerobic bacteria such as the genus Mycobacterium, Flavobacterium, and Sphingomonas suggests that groundwater was well connected with the surface layer. The potential pathogen Mycobacterium was detected in most samples, and other pathogenic bacteria were also widely distributed, indicating the vulnerability to contamination. Therefore, an integrated management system is required to secure the sustainable use of groundwater in agricultural areas with high groundwater dependence.

Spatial Variations of Salt Marsh Plants Induced by Sandy Sediment in Hampyeong Tidal Flat (함평만 갯벌의 모래 퇴적물로 인한 염습지 식물의 공간적 변이)

  • Minki, Hong;Jaeyeon, Lee;Jeong-Soo, Park;Hyohyemi, Lee
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.4
    • /
    • pp.247-258
    • /
    • 2022
  • Hampyeong Bay has a narrow seawater channel and a complex topographical structure. The sand content of the tidal flat soil is increasing due to asymmetrical sedimentation. Through the investigation of the vegetation distribution and the use of the line-transect method, sand flats were observed to gradually change the vegetation distribution of salt marshes. Comparing the vegetation area between 2016 and 2022, the obligate halophyte Suaeda maritima decreased by 74% and Zoysia sinica increased by 75%. Z. sinica seems to support the robustness of the dune environment by trapping sediments such as sand in the colony, because the underground rhizomes and stems are highly developed. To establish an effective conservation management plan for tidal flats, an integrated study should be conducted to assess the impact of changes in tidal flat soil and the interaction of vegetation communities in Hampyeong Bay.

Groundwater pollution risk mapping using modified DRASTIC model in parts of Hail region of Saudi Arabia

  • Ahmed, Izrar;Nazzal, Yousef;Zaidi, Faisal
    • Environmental Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.84-91
    • /
    • 2018
  • The present study deals with the management of groundwater resources of an important agriculture track of north-western part of Saudi Arabia. Due to strategic importance of the area efforts have been made to estimate aquifer proneness to attenuate contamination. This includes determining hydrodynamic behavior of the groundwater system. The important parameters of any vulnerability model are geological formations in the region, depth to water levels, soil, rainfall, topography, vadose zone, the drainage network and hydraulic conductivity, land use, hydrochemical data, water discharge, etc. All these parameters have greater control and helps determining response of groundwater system to a possible contaminant threat. A widely used DRASTIC model helps integrate these data layers to estimate vulnerability indices using GIS environment. DRASTIC parameters were assigned appropriate ratings depending upon existing data range and a constant weight factor. Further, land-use pattern map of study area was integrated with vulnerability map to produce pollution risk map. A comparison of DRASTIC model was done with GOD and AVI vulnerability models. Model validation was done with $NO_3$, $SO_4$ and Cl concentrations. These maps help to assess the zones of potential risk of contamination to the groundwater resources.

Estimation of Pollution Load in Anyang Stream Basin Using GIS (GIS를 이용한 안양천 유역의 오염부하량 산정)

  • 최종욱;유병태;이민환;김건흥
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.3
    • /
    • pp.1-9
    • /
    • 1999
  • In the estimation of pollution load in water basin, a data information has generally used from surveyed data. A Geographic Information System(GIS) was adopted to evaluate the amount of pollution load in Anyang stream basin which is one of the major tributaries in the Han river flows through urban area. The digital maps of administrative boundary, stream network, sub-basin, soil type, and land-use for spatial data as well as attribute data were generated. And the database of sub-basins and pollution source was structured to estimate pollution load in Anyang stream basin by an Arc/Info GIS.As the results of this investigation, the pollution load of Mokgam-chun sub-basin was the highest amount. And that of Hagi-chun sub-basin and the fourth main stream sub-basin were also high amount in Anyang stream basin. In general, it was found that the pollution load generated from the upstream area in Kyunggi province was higher than that from downstream area in Seoul. Because the point and non-point source pollution load played very significant role in the deterioration of the water quality of the Anyang stream, an integrated approach to water quality management should be required for the sub-basins of high pollution load amount.

  • PDF

Development of Web-GIS Based Agricultural Drought Information System for Agricultural Water Management (농촌용수관리를 위한 Web 및 GIS 기반 농업가뭄정보시스템 개발)

  • Nam, Won-Ho;Choi, Jin-Yong;Yoo, Seung-Hwan;Jang, Min-Won;Ko, Kwang-Don
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.236-239
    • /
    • 2009
  • 우리나라는 계절적으로 편중된 강우특성 때문에 가용 수자원이 충분하지 않고 최근엔 빈번하게 발생하는 이상기후현상과 국지성기후로 인해 가뭄의 빈도 및 강도가 증대되고 있어 기후변화에 적응할 수 있는 농촌용수 물관리 대책과 가뭄대응능력 개선의 필요성이 요구되고 있다. 이러한 가뭄의 관리를 위해서는 시간적인 가뭄의 발생과 공간적인 가뭄의 분포를 파악하여 적절한 가뭄평가 수단을 통한 가뭄대책 수립기준을 설정하고 이에 대한 대책방안을 마련하여 각 지역별 특성에 맞는 가뭄대책을 수립해야 한다. 따라서 본 연구에서는 농업가뭄을 극복하고 농촌수자원의 안정적 확보와 효율적인 이용을 위해서 농업가뭄 상황을 분석하고 평가할 수 있으며 농업가뭄대책의 수립과 시행을 뒷받침할 수 있는 Web 및 GIS 기반농업가뭄관리시스템을 제안하고자 한다. 기존의 개발된 토양수분지수(Soil Moisture Index, SMI)와 저수지가뭄지수(Reservoir Drought Index, RDI)를 통합한 통합농업가뭄지수(Integrated Agricultural Drought Index, IADI)을 이용하여 다양한 시나리오를 통해 가뭄의 여러 가지 패턴에 따른 지역별 농업가뭄의 위험과 예측 피해를 설명하고, 가뭄관리에 필요한 정보를 단계적으로 제공함으로써 실제 물 관리 및 가뭄대책 업무에 반영하고 적절한 대응책을 수립하는데 기초자료가 될 것으로 판단된다.

  • PDF

An Integrated Study of the Emissions of Ammonia, Odor and Odorants, and Pathogens and Related Contaminants from Potential Environmentally Superior Technologies for Swine Facilities Program OPEN (Odor, Pathogens, and Emissions of Nitrogen)

  • Kim D.-S.;Aneja V.P.;Arya S.P.;Robarge W.;Westerman P.;Williams M.;Dickey D.;Arkinson H.;Semunegus H.;Blunden J.;Sobsey M.;Todd L.;Ko G.
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2004.05a
    • /
    • pp.65-69
    • /
    • 2004
  • The need for developing sustainable solutions for managing the animal waste is vital for the future of the animal industry in North Carolina. As part of that process, the North Carolina Attorney General has concluded that the public interest will be served by the development and implementation of environmentally superior swine waste management technologies appropriate to each category of hog farms. To facilitate in the development, testing, and evaluation of potential technologies it is necessary that all aspects of environmental issues (air, water, soil, odor and odorants, and disease-transmitting vectors and airborne pathogens) be addressed as Part of a comprehensive strategy, Program OPEN (Odor, Pathogens, and Emissions of Nitrogen) Is comprehensively addressing these issues.

  • PDF

The Prediction of Hazard Area Using Raster Model (Raster 모델을 이용한 재해위험지 예측기법)

  • Kang, In-Joon;Choi, Chul-Ung;Cheong, Chang-Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.2 no.2 s.4
    • /
    • pp.43-53
    • /
    • 1994
  • GSIS(geo-spatial information system), particularly when utilized in hazard management decision, is one of hazard analysis tool. Data of GSIS input from digitizing or scanning of map or aerial photos. This paper focuses upon the hazard prediction in GSIS and RS analysis to assess map, aerialphotos, satellite imagery and soil map. This study found computation of hazard area analysis. the results is formed as raster data model of quadtree. Authors knew more accurate results of overlay. This paper shows building up integrated data base as well as search of hazard area in aerial photographs.

  • PDF

Assessment of Sediment Yield according to Observed Dataset

  • Lee, Sangeun;Kang, Sanghyeok
    • Journal of Environmental Science International
    • /
    • v.25 no.10
    • /
    • pp.1433-1444
    • /
    • 2016
  • South Korea is a maritime nation, surrounded by water on three sides; hence, it is important to preserve in a sustainable manner. Most areas, especially those bordering the East Sea, have been suffering from severe coastal erosion. Information on the sediment yield of a river basin is an important requirement for water resources development and management. In Korea, data on suspended sediment yield are limited owing to a lack of logistic support for systematic sediment sampling activities. This paper presents an integrated approach to estimate the sediment yield for ungauged coastal basins by using a soil erosion model and a sediment delivery rate model in a geographic information system (GIS)-based platform. For applying the sediment yield model, a basin specific parameter was validated on the basis of field data, that, ranging from 0.6 to 1.2 for the 19 gauging stations. The calculated specific sediment yield ranged from 17 to $181t/km^2.yr$ in the various basin sizes of Korea. We obtained reasonable sediment yield values when comparing the measured data trends around the world with those in Korean basins.