Browse > Article
http://dx.doi.org/10.7857/JSGE.2022.27.2.061

Hydrogeochemistry and Microbial Community Structure of Groundwater in an Agricultural Area  

Kim, Dong-Hun (Groundwater Environment Research Center, Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources)
Oh, Yong Hwa (Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University)
Lee, Bong-Joo (Groundwater Environment Research Center, Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources)
Lee, Jung-Yun (Groundwater Environment Research Center, Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources)
Publication Information
Journal of Soil and Groundwater Environment / v.27, no.2, 2022 , pp. 61-75 More about this Journal
Abstract
This study evaluated the potential threat of agricultural and human activities to groundwater in the Noseong stream watershed, a typical agricultural area, through hydrogeochemical characteristics and microbial community analyses. The groundwater in the study area was Ca-SO4 and Ca-HCO3 types alluvial aquifer mainly used for agricultural and living purposes, and contained high levels of NO3- and Cl- ions generated from anthropogenic sources such as fertilizer, livestock wastewater, and domestic sewage. Proteobacteria was most abundant in all samples with an average of 46.1% while Actinobacteria, Bacteroidetes, and Cyanobacteria were dominant on an occasional basis. The prevalence of aerobic bacteria such as the genus Mycobacterium, Flavobacterium, and Sphingomonas suggests that groundwater was well connected with the surface layer. The potential pathogen Mycobacterium was detected in most samples, and other pathogenic bacteria were also widely distributed, indicating the vulnerability to contamination. Therefore, an integrated management system is required to secure the sustainable use of groundwater in agricultural areas with high groundwater dependence.
Keywords
Groundwater; Hydrogeochemistry; Microbial community; Pathogenic bacteria; Agricultural area;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Oh, Y.H., Koh, D.-C., Kwon, H.-I., Jung, Y.-Y., Lee, K.Y., Yoon, Y.-Y., Kim, D.-H., Moon, H.S., and Ha, K., 2021, Identifying and quantifying groundwater inflow to a stream using 220Rn and 222Rn as natural tracers, J. Hydrol. Reg. Stud., 33, 100773.   DOI
2 Orata, F.D., Meier-Kolthoff, J.P., Sauvageau, D., and Stein, L.Y., 2018, Phylogenomic analysis of the gammaproteobacterial methanotrophs (rrder Methylococcales) calls for the reclassification of members at the genus and species levels, Front. Microbiol., 9(3162).
3 Oren, A., 2014, The family Rhodocyclaceae. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (Eds.), The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Springer Berlin Heidelberg, Berlin, Heidelberg, p. 975-998.
4 Nelson, W.C. and Stegen, J.C., 2015, The teduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle, Front. Microbiol., 6, 713-713.
5 Oh, Y.H., Kim, D.-H., Lee, S.-H., Moon, H.S., and Cho, S.Y., 2020, Determining characteristics of groundwater inflow to the stream in an urban area using hydrogeochemical tracers (222Rn and major dissolved ions) and microbial community analysis, J. Soil Groundw. Environ., 25(2), 16-23.   DOI
6 Pachepsky, Y., Shelton, D.R., McLain, J.E.T., Patel, J., and Mandrell, R.E., 2011, Irrigation waters as a source of pathogenic microorganisms in produce: a review, Adv. Agron., 113, 75-141.   DOI
7 Lee, J.-H., Lee, B.-J., and Unno, T., 2018, Bacterial communities in ground-and surface water mixing zone induced by seasonal heavy extraction of groundwater, Geomicrobiol. J., 35(9), 768-774.   DOI
8 Pagadala, S., Marine, S.C., Micallef, S.A., Wang, F., Pahl, D.M., Melendez, M.V., Kline, W.L., Oni, R.A., Walsh, C.S., Everts, K.L., and Buchanan, R.L., 2015, Assessment of region, farming system, irrigation source and sampling time as food safety risk factors for tomatoes, Int. J. Food. Microbiol., 196, 98-108.   DOI
9 Huntley, S., Hamann, N., Wegener-Feldbrugge, S., TreunerLange, A., Kube, M., Reinhardt, R., Klages, S., Muller, R., Ronning, C.M., Nierman, W.C., and Sogaard-Andersen, L., 2010, Comparative genomic analysis of fruiting body rormation in Myxococcales, Mol. Biol. Evol., 28(2), 1083-1097.   DOI
10 Ramirez-Castillo, F.Y., Loera-Muro, A., Jacques, M., Garneau, P., Avelar-Gonzalez, F.J., Harel, J., and Guerrero-Barrera, A.L., 2015, Waterborne pathogens: detection methods and challenges, Pathogens, 4(2), 307-334.   DOI
11 Pedersen, K., 2011, Gallionella. In: Reitner, J., Thiel, V. (Eds.), Encyclopedia of Geobiology. Springer Netherlands, Dordrecht, p. 411-412.
12 Sang, S., Zhang, X., Dai, H., Hu, B.X., Ou, H., and Sun, L., 2018, Diversity and predictive metabolic pathways of the prokaryotic microbial community along a groundwater salinity gradient of the Pearl river delta, China, Sci. Rep., 8(1), 17317.   DOI
13 Schulze-Robbecke, R., 1993, Mycobacteria in the environment, Immun. Infekt., 21(5), 126-131.
14 Slover, C.M. and Danziger, L., 2008, Lactobacillus: a review, Clin. Microbiol. Newsl., 30(4), 23-27.   DOI
15 Spanevello, M.D. and Patel, B.K.C., 2004, The phylogenetic diversity of Thermus and Meiothermus from microbial mats of an Australian subsurface aquifer runoff channel, FEMS Microbiol. Ecol., 50(1), 63-73.   DOI
16 Stoecker, K., Bendinger, B., Schoning, B., Nielsen, P.H., Nielsen, J.L., Baranyi, C., Toenshoff, E.R., Daims, H., and Wagner, M., 2006, Cohn's Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase, Proc. Natl. Acad. Sci., 103(7), 2363-2367.   DOI
17 Yang, J.H., Kim, H.-K., Kim, M., Lee, M.K., Shin, I.K., Park, S.H., Kim, H.S., Ju, B.K., Kim, D.S., and Kim, T.S., 2015, Evaluation of groundwater quality deterioration using the hydrogeochemical characteristics of shallow portable groundwater in an agricultural area, The J. Eng. Geol., 25(4), 533-545.   DOI
18 Uyttendaele, M., Jaykus, L.-A., Amoah, P., Chiodini, A., Cunliffe, D., Jacxsens, L., Holvoet, K., Korsten, L., Lau, M., McClure, P., Medema, G., Sampers, I., and Rao Jasti, P., 2015, Microbial hazards in irrigation water: standards, norms, and testing to manage use of water in fresh produce primary production, Comp. Rev. Food Sci. Food Saf., 14(4), 336-356.   DOI
19 Piper, A.M., 1944, A Graphic procedure in the geochemical interpretation of water-analyses, Eos, Transactions American Geophysical Union, 25(6), 914-928.   DOI
20 Balkwill, D.L., Fredrickson, J.K., and Romine, M.F., 2006, Sphingomonas and related genera. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E. (Eds.), The Prokaryotes: Volume 7: Proteobacteria: Delta, Epsilon Subclass. Springer New York, New York, NY, p. 605-629.
21 Ghilamicael, A.M., Boga, H.I., Anami, S.E., Mehari, T., and Budambula, N.L.M., 2018, Potential human pathogenic bacteria in five hot springs in eritrea revealed by next generation sequencing, PLoS One, 13(3), e0194554.   DOI
22 Griebler, C. and Lueders, T., 2009, Microbial biodiversity in groundwater ecosystems, Freshw. Biol., 54(4), 649-677.   DOI
23 de Voogd, N.J., Cleary, D.F.R., Polonia, A.R.M., and Gomes, N.C.M., 2015, Bacterial community composition and predicted functional ecology of sponges, sediment and seawater from the thousand islands reef complex, West Java, Indonesia, FEMS Microbiol. Ecol., 91(4).
24 Bratanis, E., Andersson, T., Lood, R., and Bukowska-Faniband, E., 2020, Biotechnological potential of Bdellovibrio and like organisms and their secreted enzymes, Front. Microbiol., 11(662).
25 Cho, B.-W., Yun, U., Lee, B.-D., and Ko, K.-S., 2012, Hydrogeological characteristics of the wangjeon-ri PCWC area, Nonsan-city, with an emphasis on water level variations, The J. Eng. Geol., 22(2), 195-205.   DOI
26 De Vet, W., Dinkla, I., Abbas, B., Rietveld, L., and Van Loosdrecht, M., 2012, Gallionella spp. in trickling filtration of subsurface aerated and natural groundwater, Biotechnol. Bioeng., 109(4), 904-912.   DOI
27 Delafont, V., Samba-Louaka, A., Cambau, E., Bouchon, D., Moulin, L., and Hechard, Y., 2017, Mycobacterium llatzerense, a waterborne Mycobacterium, that resists phagocytosis by Acanthamoeba castellanii, Sci. Rep., 7(1), 46270.   DOI
28 Forbes, B.A., Hall, G.S., Miller, M.B., Novak, S.M., Rowlinson, M.-C., Salfinger, M., Somoskovi, A., Warshauer, D.M., and Wilson, M.L., 2018, Practical guidance for clinical microbiology laboratories: Mycobacteria, Clin. Microbiol. Rev., 31(2), e00038-00017.
29 Hallbeck, L. and Pedersen, K., 2014, The family Gallionellaceae. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (Eds.), The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Springer Berlin Heidelberg, Berlin, Heidelberg, p. 853-858.
30 Van Der Linden, I., Cottyn, B., Uyttendaele, M., Berkvens, N., Vlaemynck, G., Heyndrickx, M., and Maes, M., 2014, Enteric pathogen survival varies substantially in irrigation water from Belgian lettuce producers, Int. J. Environ. Re.s Public Health, 11(10), 10105-10124.   DOI
31 Waskiewicz, A. and Irzykowska, L., 2014, Flavobacterium spp. - characteristics, occurrence, and toxicity. In: Batt, C.A., Tortorello, M.L. (Eds.), Encyclopedia of Food Microbiology (Second Edition). Academic Press, Oxford, p. 938-942.
32 Kasalicky, V., Jezbera, J., Hahn, M.W., and Simek, K., 2013, The diversity of the Limnohabitans genus, an important group of freshwater bacterioplankton, by characterization of 35 isolated strains, PLoS One, 8(3), e58209.   DOI
33 Hounslow, A., 2018, Water quality data: Analysis and interpretation, p. 1-398.
34 Ibekwe, A.M., Leddy, M., and Murinda, S.E., 2013, Potential human pathogenic bacteria in a mixed urban watershed as revealed by pyrosequencing, PLoS One, 8(11), e79490.   DOI
35 Wolfe, R., 1960, Observations and studies of Crenothrix polyspora, J. Am. Water Work. Assoc., 52, 915-918.   DOI
36 Yoon, J., Park, S., Choi, H., Kim, D.H., Kim, M., Yun, S.-T., Kim, Y., and Kim, H.-K., 2020, Analysis of groundwater quality and contamination factors in livestock region, South Korea, J. Soil Groundw. Environ., 25(4), 98-105.   DOI
37 Yoon, K.-S., Tsukada, N., Sakai, Y., Ishii, M., Igarashi, Y., and Nishihara, H., 2008, Isolation and characterization of a new facultatively autotrophic hydrogen-xxidizing betaproteobacterium, Hydrogenophaga sp. AH-24, FEMS Microbiol. Lett., 278(1), 94-100.   DOI
38 Janniche, G.S., Spliid, H., and Albrechtsen, H.J., 2012, Microbial community-level physiological profiles (CLPP and herbicide mineralization potential in groundwater affected by agricultural land use, J. Contam. Hydrol., 140-141, 45-55.   DOI
39 Kanamori, H., Weber, D.J., and Rutala, W.A., 2016, Healthcare outbreaks associated with a water reservoir and infection prevention strategies, Clin. Infect. Dis., 62(11), 1423-1435.   DOI
40 Hlavinek, P., Bonacci, O., Marsalek, J., and Mahrikova, I., 2008, Dangerous pollutants (Xenobiotics) in urban water cycle. Nato Science for Peace and Security Series. Springer, Dordrecht.
41 Kersters, K., De Vos, P., Gillis, M., Swings, J., Vandamme, P., and Stackebrandt, E., 2006, Introduction to the proteobacteria. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E. (Eds.), The Prokaryotes: Volume 5: Proteobacteria: Alpha and Beta Subclasses. Springer New York, New York, NY, p. 3-37.
42 Kim, D.-H., Moon, S.-H., Ko, K.-S., and Kim, S., 2020, Microbial community structures related to arsenic concentrations in groundwater occurring in Haman area, South Korea, Econ. Environ. Geol., 53(6), 655-666.   DOI
43 Kwon, H.-I., Koh, D.-C., Jung, Y.-Y., Kim, D.-H., and Ha, K., 2020, Evaluating the impacts of intense seasonal groundwater pumping on stream-aquifer interactions in agricultural riparian zones using a multi-parameter approach, J. Hydrol., 584, 124683.   DOI
44 Jeong, C.H., Yang, J.H., Lee, Y.J., Lee, Y.C., Choi, H.Y., Kim, M.S., Kim, H.K., Kim, T.S., and Jo, B.U., 2015, Occurrences of uranium and radon-222 from groundwaters in various geological environment in the Hoengseong area., The J. Eng. Geol., 25(4), 557-576.   DOI
45 Thomas, F., Hehemann, J.-H., Rebuffet, E., Czjzek, M., and Michel, G., 2011, Environmental and gut Bacteroidetes: the food connection, Front. Microbiol., 2, 93-93.   DOI
46 Kim, K.-H., Yun, S.-T., Chae, G.-T., Choi, B.-Y., Kim, S.-O., Kim, K., Kim, H.-S., and Lee, C.-W., 2002, Nitrate contamination of alluvial groundwaters in the Keum river watershed area: Source and behaviors of nitrate, and suggestion to secure water supply, The J. Eng. Geol., 12(4), 471-484.
47 Korbel, K., Chariton, A., Stephenson, S., Greenfield, P., and Hose, G.C., 2017, Wells provide a distorted view of life in the aquifer: Implications for sampling, monitoring and assessment of groundwater ecosystems, Sci. Rep., 7(1), 40702.   DOI
48 Kwon, H.-I., Koh, D.-C., Jung, B., and Ha, K., 2017, Quantification of seasonally variable water flux between aquifer and stream in the riparian zones with water curtain cultivation activities using numerical simulation., J. Geol. Soc. Korea, 53, 277-290.   DOI
49 Lacroix, B. and Citovsky, V., 2013. Agrobacterium. In: Maloy, S., Hughes, K. (Eds.), Brenner's encyclopedia of genetics (Second Edition). Academic Press, San Diego, p. 52-54.
50 KIGAM, 2019, Integrated technology development for securing groundwater/geothermal resources and conserving ecosystem according to climate change.
51 Lee, G.-M., Park, S., Kim, K.-I., Jeon, S.-H., Song, D., Kim, D.-h., Kim, T.-S., Yun, S.-T., Chung, H.M., and Kim, H.-K., 2017, Evaluation for impacts of nitrogen source to groundwater quality in livestock farming area, Korean J. Soil Sci. Fert., 50(5), 345-356.   DOI
52 Kim, H., Kaown, D., Mayer, B., Lee, J.-Y., Hyun, Y., and Lee, K.-K., 2015, Identifying the sources of nitrate contamination of groundwater in an agricultural area (Haean basin, Korea) using isotope and microbial community analyses, Sci. Total Environ., 533, 566-575.   DOI
53 Ko, K.-S., Ahn, J.-S., Suk, H.-J., Lee, J.-S., and Kim, H.-S., 2008, Hydrogeochemistry and statistical analysis of water quality for small potable water supply system in Nonsan area, J. Soil and Groundw. Environ., 13(6), 72-84.
54 Lall, U., Josset, L., and Russo, T., 2020, A snapshot of the world's groundwater challenges, Annu. Rev. Environ. Resour., 45, 171-194.   DOI
55 Lee, J.-C., Kim, S.-G., and Whang, K.-S., 2015, Sphingobium subterraneum sp. Nov., isolated from ground water, Int. J. Syst. Evol. Microbiol., 65(Pt_2), 393-398.   DOI
56 Percival, S.L. and Williams, D.W., 2014, Chapter Nine - Mycobacterium. In: Percival, S.L., Yates, M.V., Williams, D.W., Chalmers, R.M., Gray, N.F. (Eds.), Microbiology of Waterborne Diseases (Second Edition). Academic Press, London, p. 177-207.
57 Stites, W. and Kraft, G.J., 2001, Nitrate and chloride loading to groundwater from an irrigated north-central U.S. sand-plain vegetable field, J. Environ. Qual., 30(4), 1176-1184.   DOI
58 UN Water, 2018, Progress on level of water stress: global baseline for SDG indicator 6.4. 2, UN Water, Geneva (2018).
59 Wang, W., Wang, H., Feng, Y., Wang, L., Xiao, X., Xi, Y., Luo, X., Sun, R., Ye, X., Huang, Y., Zhang, Z., and Cui, Z., 2016, Consistent responses of the microbial community structure to organic farming along the middle and lower reaches of the Yangtze river, Sci. Rep., 6(1), 35046.   DOI
60 Saether, O.M. and De Caritat, P., 1996, Geochemical processes, weathering and groundwater recharge in catchments. CRC Press.
61 Sherwood, W.C., 1989, Chloride loading in the south fork of the Shenandoah river, Virginia, U.S.A, Environ. Geol., 14, 99-106.
62 Edgar, R.C., 2010, Search and clustering orders of magnitude faster than blast, Bioinform., 26(19), 2460-2461.   DOI
63 Zhang, Q., Wu, J., Yang, F., Lei, Y., Zhang, Q., and Cheng, X., 2016, Alterations in soil microbial community composition and biomass following agricultural land use change, Sci. Rep., 6(1), 36587.   DOI
64 Allende, A. and Monaghan, J., 2015, Irrigation water quality for leafy crops: A perspective of risks and potential solutions, Int. J. Environ. Res. Public Health, 12(7), 7457-7477.   DOI
65 Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Pena, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J., and Knight, R., 2010, Qiime allows analysis of high-throughput community sequencing data, Nat. Methods, 7(5), 335-336.   DOI
66 Zeng, X., Hosono, T., Matsunaga, M., Ohta, H., Niidome, T., Shimada, J., and Morimura, S., 2017, Spatial distribution of microbial communities in the alluvial aquifer along the Oyodo river, Miyakonojo basin, Japan, J. Water Environ. Technol., 15(4), 152-162.   DOI
67 De Vet, W., Dinkla, I., Rietveld, L., and Van Loosdrecht, M., 2011, Biological iron cxidation by Gallionella spp. in drinking water production under fully aerated conditions, Water Res., 45(17), 5389-5398.   DOI
68 Li, W., Fu, L., Niu, B., Wu, S., and Wooley, J., 2012, Ultrafast clustering algorithms for metagenomic sequence analysis, Brief. Bioinform., 13(6), 656-668.   DOI
69 Moon, J.-T., Kim, K.-J., Kim, S.-H., Jeong, C.-S., and Hwang, G.-S., 2008, Geochemical investigation on arsenic contamination in the alluvial ground-water of Mankyeong river watershed, Econ. Environ. Geol., 41(6), 673-683.
70 Mueller, D.K. and Helsel, D., 1996, Nutrients in the nation's waters--too much of a good thing?
71 Gibbs, R.J., 1970, Mechanisms controlling world water chemistry, Science, 170(3962), 1088-1090.   DOI
72 Hassan, Z., Sultana, M., van Breukelen, B.M., Khan, S.I., and Roling, W.F., 2015, Diverse arsenic- and iron-cycling microbial communities in arsenic-contaminated aquifers used for drinking water in Bangladesh, FEMS Microbiol. Ecol., 91(4).
73 Katsoyiannis, I.A. and Zouboulis, A.I., 2006, Use of iron-and manganese-oxidizing bacteria for the combined removal of iron, manganese and arsenic from contaminated groundwater, Water Qual. Rese. J., 41(2), 117-129.   DOI
74 Oh, S. and Choi, D., 2019, Microbial community enhances biodegradation of bisphenol a through selection of Sphingomonadaceae, Microb. Ecol., 77(3), 631-639.   DOI