• Title/Summary/Keyword: Soil fungal community

Search Result 50, Processing Time 0.029 seconds

Effects of Diesel Oil on the Population and Activity of Soil Microbial Community (토양미생물군집의 개체수와 활성도에 미치는 경유의 영향)

  • Seo, Eun-Young;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.32 no.2
    • /
    • pp.163-171
    • /
    • 1994
  • The effects of diesel oil on the microbial community in sandy loam soil were investigated, and the effects of bioremediation which was performed to enhance the removal of diesel oil from soil were also measured. The residual percentage of diesel oil was about 50% after 16 week incubation period. The bioremediation treatment increased the removal rate at 60~95%. When the soil was contaminated with diesel oil, the direct bacterial count, length of fungal hyphae, aerobic heterotroph and hydrocarbon degrader were increased by 2~3 orders of magnitude. The bioremediation further increased these numbers 10 to 100-fold. There were no difinite patterns of change in fluorescein diacetate hydrolysis activity in bioremediation-untreated soil, but about 10 times of increase of activity was observed in bioremediation-treated soil. Similar change was occurred in soil dehydrogenase activity.

  • PDF

Assessment of Soil Microbial Communities in Carotenoid-Biofortified Rice Ecosystem

  • Sohn, Soo-In;Oh, Young-Ju;Kim, Byung-Yong;Lee, Bumkyu;Lee, Si-Myung;Oh, Sung-Dug;Lee, Gang-Seob;Yun, Doh-Won;Cho, Hyun-Suk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.442-450
    • /
    • 2015
  • This study was conducted to investigate the effect of Psy-2A-CrtI (PAC), a genetically modified (GM) rice with enhanced ${\beta}$-carotene, on the soil microbial community. The soil used to cultivate GM rice and its wild-type, Nakdong, was analyzed for population density, denaturing gradient gel electrophoresis (DGGE), and pyrosequencing. It was found that the bacterial, fungal and actinomycetes population densities of the PAC soils were within the range of those of the non-GM rice cultivar, Nakdong. The DGGE banding patterns of the GM and non-GM soils were also similar, suggesting that the bacterial community structures were stable within a given month and were unaffected by the presence of a GM plant. The pyrosequencing result showed a temporal difference in microorganism taxon and distribution ratio, but no significant difference between GM and non-GM was found. The persistence of the transgene DNA in the plant and surrounding soil were investigated for different time periods. There were differences in the persistence within the plant depending on the gene, but they could not be detected after 5 weeks. Also the transgenes were not detected in the surrounding soil. These results indicate that soil microbial communities are unaffected by the cultivation of a PAC rice within the experimental time frame.

Diversity and community structure of ectomycorrhizal mycorrhizal fungi in roots and rhizosphere soil of Abies koreana and Taxus cuspidata in Mt. Halla

  • Ji-Eun Lee;Ahn-Heum Eom
    • Mycobiology
    • /
    • v.50 no.6
    • /
    • pp.448-456
    • /
    • 2022
  • In this study, the roots and rhizosphere soil of Abies koreana and Taxus cuspidata were collected from sites at two different altitudes on Mt. Halla. Ectomycorrhizal fungi (EMF) were identified by Illumina MiSeq sequencing. The proportion of EMF from the roots was 89% in A. koreana and 69% in T. cuspidata. Among EMF in rhizosphere soils, the genus Russula was the most abundant in roots of A. koreana (p < 0.05). The altitude did not affect the biodiversity of EMF communities but influenced fungal community composition. However, the host plants had the most significant effect on EMF communities. The result of the EMF community analysis showed that even if the EMF were isolated from the same altitudes, the EMF communities differed according to the host plant. The community similarity index of EMF in the roots of A. koreana was higher than that of T. cuspidata (p < 0.05). The results show that both altitude and host plants influenced the structure of EMF communities. Conifers inhabiting harsh sub-alpine environments rely strongly on symbiotic relationships with EMF. A. koreana is an endangered species with a higher host specificity of EMF and climate change vulnerability than T. cuspidata. This study provides insights into the EMF communities, which are symbionts of A. koreana, and our critical findings may be used to restore A. koreana.

Impact of a Recombinant Biocontrol Bacterium, Pseudomonas fluorescens pc78, on Microbial Community in Tomato Rhizosphere

  • Kong, Hyun Gi;Kim, Nam Hee;Lee, Seung Yeup;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.32 no.2
    • /
    • pp.136-144
    • /
    • 2016
  • Pseudomonas fluorescens pc78 is an effective biocontrol agent for soil-borne fungal diseases. We previously constructed a P43-gfp tagged biocontrol bacteria P. fluorescens pc78-48 to investigate bacterial traits in natural ecosystem and the environmental risk of genetically modified biocontrol bacteria in tomato rhizosphere. Fluctuation of culturable bacteria profile, microbial community structure, and potential horizontal gene transfer was investigated over time after the bacteria treatment to the tomato rhizosphere. Tagged gene transfer to other organisms such as tomato plants and bacteria cultured on various media was examined by polymerase chain reaction, using gene specific primers. Transfer of chromosomally integrated P43-gfp from pc78 to other organisms was not apparent. Population and colony types of culturable bacteria were not significantly affected by the introduction of P. fluorescens pc78 or pc78-48 into tomato rhizosphere. Additionally, terminal restriction fragment length polymorphism profiles were investigated to estimate the influence on the microbial community structure in tomato rhizosphere between non-treated and pc78-48-treated samples. Interestingly, rhizosphere soil treated with strain pc78-48 exhibited a significantly different bacterial community structure compared to that of non-treated rhizosphere soil. Our results suggest that biocontrol bacteria treatment influences microbial community in tomato rhizosphere, while the chromosomally modified biocontrol bacteria may not pose any specific environmental risk in terms of gene transfer.

Three New Records of Mortierella Species Isolated from Crop Field Soil in Korea

  • Yadav, Dil Raj;Kim, Sang Woo;Adhikari, Mahesh;Um, Yong Hyun;Kim, Hyun Seung;Kim, Changmu;Lee, Hyang Burm;Lee, Youn Su
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.203-209
    • /
    • 2015
  • Three new fungal species of the genus Mortierella, Mortierella zychae, Mortierella ambigua, and Mortierella indohii, have been reported in Korea. The fungi were encountered during a study on the fungal community of soil samples collected from different locations in Korea. The species were identified based on molecular and morphological analyses. This study presents detailed descriptions of the morphological observations and molecular phylogenetic analysis of these three fungi. All three species were found to be sensitive to triphenyltetrazolium chloride staining. M. zychae demonstrated the highest intensity of mycelial staining, indicating that this species has the highest potential to produce arachidonic acid of the three species. The staining results indicated that the newly recorded species could potentially be useful for arachidonic acid production.

A New Record of Neosartorya aureola Isolated from Field Soil in Korea

  • Adhikari, Mahesh;Kim, Sangwoo;Yadav, Dil Raj;Kim, Changmu;Lee, Hyang Burm;Lee, Youn Su
    • The Korean Journal of Mycology
    • /
    • v.43 no.3
    • /
    • pp.191-195
    • /
    • 2015
  • A new species of Neosartorya was recovered during investigation of the fungal community in soil samples collected from different locations in Korea; Neosartorya aureola KNU14-7 was isolated for the first time from field soil in Korea and identified based on the internal transcribed spacer region of rDNA and morphological characteristics. The species has not been officially reported from Korea and we report it here with description and figures.

A New Record of Penicillium cainii from Soil in Korea

  • Deng, Jian Xin;Ji, Seung Hyun;Paul, Narayan Chandra;Lee, Ji Hye;Yu, Seung Hun
    • Mycobiology
    • /
    • v.41 no.2
    • /
    • pp.112-115
    • /
    • 2013
  • Twenty Penicillium isolates were recovered during the investigation of fungal community in the soil samples collected from Wando (Jeonnam Province, Korea). Among them, one species was identified and described as P. cainii based on phylogentic analysis of internal transcribed spacer and ${\beta}$-tubulin (BT2) genes and morphological characteristics. This is a first report of P. cainii in Korea.

Intraspecific Functional Variation of Arbuscular Mycorrhizal Fungi Originated from Single Population on Plant Growth

  • Lee, Eun-Hwa;Ka, Kang-Hyeon;Eom, Ahn-Heum
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.48-48
    • /
    • 2014
  • Arbuscular Mycorrhizal Fungi(AMF) is widespread symbiont forming mutualistic relationship with plant root in terrestrial forest in ecosystem. They provide improved absorption of nutrient and water, and enhance the resistance against plant pathogen or polluted soil, therefore AM fungi are important for survival and maintaining of individual or community of plant. For last decade, many studies about the functional variation of AM fungi on host plant growth response were showed that different geographic isolates, even same species, have different effect on host plant. However, little was known about functional variation of AM fungal isolates originated single population, which provide important insight about intraspecific diversity of AMF and their role in forest ecosystem. In this study, four AM fungal isolates of Rhizophagus clarus were cultured in vitro using transformed carrot (Daucus carota) root and they showed the difference between isolates in ontogenic characteristics such as spore density and hyphal length. The plant growth response by mycorrhizas were measured also. After 20 weeks from inoculation of these isolates to host plants, dry weight, Root:Shoot ratio, colonization rates and N, P concentration of host plant showed host plant was affected differently by AM fungal isolates. This results suggest that AM fungi have high diversity in their functionality in intraspecific level, even in same population.

  • PDF

Analysis of Bacterial Diversity and Community Structure in Forest Soils Contaminated with Fuel Hydrocarbon

  • Ahn Jae-Hyung;Kim Mi-Soon;Kim Min-Cheol;Lim Jong-Sung;Lee Goon-Taek;Yun Jun-Ki;Kim Tae-Sung;Kim Tae-San;Ka Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.704-715
    • /
    • 2006
  • Oil spill was found in 1999 from a diesel storage facility located near the top of Baekun Mountain in Uiwang City. Application of bioremediation techniques was very relevant in removing oil spills in this site, because the geological condition was not amenable for other onsite remediation techniques. For efficient bioremediation, bacterial communities of the contaminated site and the uncontaminated control site were compared using both molecular and cultivation techniques. Soil bacterial populations were observed to be stimulated to grow in the soils contaminated with diesel hydrocarbon, whereas fungal and actinomycetes populations were decreased by diesel contamination. Most of the dieseldegrading bacteria isolated from contaminated forest soils were strains of Pseudomonas, Ralstonia, and Rhodococcus species. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that the profiles were different among the three contaminated sites, whereas those of the control sites were identical to each other. Analysis of 16S rDNA sequences of dominant isolates and clones showed that the bacterial community was less diverse in the oil-contaminated site than at the control site. Sequence analysis of the alkane hydroxylase genes cloned from soil microbial DNAs indicated that their diversity and distribution were different between the contaminated site and the control site. The results indicated that diesel contamination exerted a strong selection on the indigenous microbial community in the contaminated site, leading to predominance of well-adapted microorganisms in concurrence with decrease of microbial diversity.

A Study of Arctic Microbial Community Structure Response to Increased Temperature and Precipitation by Phospholipid Fatty Acid Analysis

  • Sungjin Nam;Ji Young Jung
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.4 no.2
    • /
    • pp.86-94
    • /
    • 2023
  • Climate change is more rapid in the Arctic than elsewhere in the world, and increased precipitation and warming are expected cause changes in biogeochemical processes due to altered microbial communities and activities. It is crucial to investigate microbial responses to climate change to understand changes in carbon and nitrogen dynamics. We investigated the effects of increased temperature and precipitation on microbial biomass and community structure in dry tundra using two depths of soil samples (organic and mineral layers) under four treatments (control, warming, increased precipitation, and warming with increased precipitation) during the growing season (June-September) in Cambridge Bay, Canada (69°N, 105°W). A phospholipid fatty acid (PLFA) analysis method was applied to detect active microorganisms and distinguish major functional groups (e.g., fungi and bacteria) with different roles in organic matter decomposition. The soil layers featured different biomass and community structure; ratios of fungal/bacterial and gram-positive/-negative bacteria were higher in the mineral layer, possibly connected to low substrate quality. Increased temperature and precipitation had no effect in either layer, possibly due to the relatively short treatment period (seven years) or the ecosystem type. Mostly, sampling times did not affect PLFAs in the organic layer, but June mineral soil samples showed higher contents of total PLFAs and PLFA biomarkers for bacteria and fungi than those in other months. Despite the lack of response found in this investigation, long-term monitoring of these communities should be maintained because of the slow response times of vegetation and other parameters in high-Arctic ecosystems.