• Title/Summary/Keyword: Soil freezing

Search Result 221, Processing Time 0.023 seconds

An Experimental Study on The Compressive Strength of Soil Stabilized with Quick Lime and Briquette ash (안정처리토의 강도특성에 관한 실험적 연구)

  • Kim, Jae-Young;Choi, Hyuk-Jae;You, Byung-Ok;Ann, Sung-Yeul;Park, Seung-Hae
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.381-386
    • /
    • 2005
  • In order to have compressive strength tests and frost heaving tests, two sorts of soil samples at Chonbuk-Do area were used. According to this research, the compressive strength of soil which was mixed by quick lime, was largely increased until 28 days but after 28 days, the increment of strength was seldom found and its maximum compressive strength increasing rate for content of quick lime was $10{\sim}15%$ scope. In the mixed rates of quick lime and briquette ash, the compressive strength of soil which was mixed by quick lime and briquette ash, was increased by increasing mixed rates of quick lime and its compressive strength was increased by additional quantity. The compressive strength of mixed soil within freezing-thawing 1 cycle was diminished around 30% compared to non-freezing soil's 28 days compressive strength but there were no movements after 2 cycle.

  • PDF

Simulation of Spatio-Temporal Distributions of Winter Soil Temperature Taking Account of Snow-melting and Soil Freezing-Thawing Processes (융설과 토양의 동결-융해 과정을 고려한 겨울철 토양온도의 시공간 분포 모의)

  • Kwon, Yonghwan;Koo, Bhon K.
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.10
    • /
    • pp.945-958
    • /
    • 2014
  • Soil temperature is one of the most important environmental factors that govern hydrological and biogeochemical processes related to diffuse pollution. In this study, considering the snowmelting and the soil freezing-thawing processes, a set of computer codes to estimate winter soil temperature has been developed for CAMEL (Chemicals, Agricultural Management and Erosion Losses), a distributed watershed model. The model was calibrated and validated against the field measurements for three months at 4 sites across the study catchment in a rural area of Yeoju, Korea. The degree of agreement between the simulated and the observed soil temperature is good for the soil surface ($R^2$ 0.71~0.95, RMSE $0.89{\sim}1.49^{\circ}C$). As for the subsurface soils, however, the simulation results are not as good as for the soil surface ($R^2$ 0.51~0.97, RMSE $0.51{\sim}5.08^{\circ}C$) which is considered resulting from vertically-homogeneous soil textures assumed in the model. The model well simulates the blanket effect of snowpack and the latent heat flux in the soil freezing-thawing processes. Although there is some discrepancy between the simulated and the observed soil temperature due to limitations of the model structure and the lack of data, the model reasonably well simulates the temporal and spatial distributions of the soil temperature and the snow water equivalent in accordance with the land uses and the topography of the study catchment.

Unsaturated Soil Properties of Compacted Soil at Sub-Zero Temperature (영하온도에서 다짐된 지반의 불포화 특성)

  • Lee, Jeonghyeop;Hwang, Bumsik;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.3
    • /
    • pp.5-13
    • /
    • 2018
  • Recently, construction disasters in thawing season are increasing due to the ground collapse and it is related to the improper compaction during winter season. Compaction at sub-zero temperature reduces the compaction effect and the research of mechanical properties of thawed soil after winter compaction can be used as useful data to understand the behavior of the ground in the thawing season. On the other hand, the research interest in the unsaturated soil mechanics has been increasing in the field of the geotechnical engineering. Therefore, it is expected that the research of unsaturated characteristics under the compaction of sub-zero temperature and freezing & thawing condition provides information to the researchers in the related fields. Therefore, in this research, unsaturated soil-water characteristics test and unsaturated uniaxial compression test were conducted on the specimens compacted at sub-zero temperature and continuous freezing & thawing condition to investigate change of unsaturated characteristics and matric suction. Based on the test results, the change of matric suction and the decrease of strength and stiffness were observed with the freezing & thawing conditions. Especially in case of the weathered soil, the strength and matric suction were significantly reduced with lower temperature and more repetition of freezing & thawing cycles. This result implies that compaction of sub-zero temperature and freezing & thawing cycles will have a considerable influence on the stability of the ground.

Effects of the Freeze/Thaw Process on the Strength Characteristics of Soils(1) (동결-융해작용이 흙의 제강도특성에 미치는 영향(I))

  • 유능환;박승법
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.2
    • /
    • pp.43-53
    • /
    • 1989
  • In this research programs, a series test was conducted to show the effects of freeze/thaw process on the various soil properties. The tests were carried out taken from the west sea shore of Korean peninsular and the west sea shore of Scotland, and their results are as follows; 1. There was a positive total heave in a freezing run, although water may he expelled for the sample initially. The water flow must he reverse' from expulsion to intake. 2. The confining pressure had an overriding influence on the heave and frost penetration, a sudden change of the axial strain at failure with strain rate was observed occuring at a strain rate between 10-5 and 10-6, and the initial friction angle of frozen clay was appeared zero. 3. There was shown a significant decrease in liquid limit of soil which was subjected to freeze/thaw process for the initial value of about 20% because of soil particles aggregation. 4. The cyclic freeze/thaw caused a sinificant reduction in shear strength and its thixotropic regain. The frozen/thawed soil exibited negative strength regain, particularly at high freeze/thaw cycles. 5. The freezing temperature greatly influenced on the failure strength of soils and this. Trend was more pronounced the lower the freezing temperature and shown the ductile failure with indistinct peaks.

  • PDF

The Moisture Migration of Compacted Clay Liners in the Landfill on Winter Condition (겨울철 조건하의 폐기물매립지 점토층의 수분이동)

  • 이재영;최상일
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1997.05a
    • /
    • pp.47-52
    • /
    • 1997
  • The experimental investigations considered in this paper are similar in many respects to those of Lee$^1$, with some key differences. First, there is no layering of the soils in a heterogeneous liner. The only soil investigated is the clay component of the cover liner. This ensures that the clay is exposed to freezing and that frost propagation in the clay can be investigated separate from other processes. Second, a closed system approach to the simulation was adopted. According to Jones$^2$, closed-system freezing occurs when there is no source of water available beyond that originally present in the soil voids. Freezing under such conditions results in very thin or non-existent ice lenses. One of tile objectives of the experiments described in this paper was the moisture migration and the changing of moisture contents of the compacted clay liner in landfill. The closed-system was used to limit tile variables in the experimental simulation to make these calculations more direct, although the final results could be applied to an open system also. As a result, the moisture content decreased about 45%-46% after two freeze/thaw cycles.

  • PDF

Engineering Characteristics of Antarctic and Siberian Frozen Soils (남극 및 시베리아 흙의 동토공학적 특성 분석)

  • Kim, Young-Chin;Shin, Jae-Won;Kim, Hyun-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.894-904
    • /
    • 2008
  • In this study, soil samples from the Antarctic and Vladivostok, Siberia were tested in the laboratory, and specific gravity, compaction curve and grain size distribution were determined. The effect of temperature change on the thermal conductivity, unfrozen water content and compressive strength were investigated. Samples for the compressive strength test were prepared in a mold with a fixed volume to prevent swelling and the effect of temperature and water content change on the strength were compared. Results from the thermal conductivity test showed that thermal conductivity values for both soils were larger at temperatures below freezing than above freezing. The unfrozen water content dropped sharply within a temperature range of $0{\sim}-5^{\circ}C$ and then gradually decreased further up to $-20^{\circ}C$. Compressive strength test results showed various stress/deformation curves with a change in water content. Sandy soil had much larger strength than pure ice at an identical temperature, while clayey soil had a smaller strength than ice near the freezing point, but showed a larger strength at temperatures belows $-15^{\circ}C$.

  • PDF

An Experimental Study on Frost Heaving Characteristics of Soil Stabilized with the Additives (안정처리토의 동상특성에 관한 실험적 연구)

  • Kim, Jae-Young;Ju, Jae-Woo;You, Byung-Ok;Yang, Sung-Kee
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.215-218
    • /
    • 2003
  • In order to study the frost heaving characteristics of soil stabilitized with a quick lime, a cement and a briquette ash, frost heaving tests were performed with 2 kinds of soil sampled at Chonbuk-Do area. Frost heaving of no-stabilizing soil compacted with water content greater than optimum water content was increased as the frost period was increased but in case of samples with water content smaller than optimum water content, the frost period gave no affect about increase and decrease of the frost heaving. Both frost heaving of stabilizing and no-stabilizing soil with water content greater than optimum water content was decreased with the increase of the repetition number of freezing and thawing. There was no increase or decrease of frost heaving in the frost heaving test after 5 times of freezing and thawing.

  • PDF

Nutrient Solute Transport during the Course of Freezing and Thawing of Soils in Korea (동결(凍結)과 해빙(解氷) 기간(期間)중 토양내(土壤內) 양분(養分) 용질(溶質)의 이동(移動))

  • Ha, Sng-Keun;Jung, Yeong-Sang;Lim, Hyung-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.2
    • /
    • pp.135-144
    • /
    • 1995
  • Understanding on nutrient solute movement during the course of freezing and thawing was attempted through laboratory and field obsevations. Small sectioned tubes with 5cm inner diameter, 0.2cm thick and 1cm long were connected to 30cm long soil columns for laboratory study. The columns were filled with soil, and treated with 20mmol/kg $KNO_3$ for upper 5cm. The upper end was set in the freezing section, and the lower end was set in the refrigerating section of a refrigerator. Temperature was controlled at $-7({\pm}1)^{\circ}C$ and $1.5({\pm}1)^{\circ}C$, respectively. After top 5cm soil was frozen, the columns were sectioned, and analyzed for $NO_3^-$, $NH_4^+$ and $K^+$. For field study, the 20cm inner diameter and lm long soil columns were installed in Chuncheon and Daegwanryung, where the altitude was 74m and 840m, respectively. The soils used were silt loam and clay loam. The top 20cm soils were treated with 50mmol/kg as $KNO_3$. The soil columns were taken during winter freezing and after thawing. By laboratiry study, upward movement of $NO_3^-$ and $K^+$ during the course of freezing was confirmed. The upward movement of $K^+$ was, however, one fifth to one tenth of $NO_3^-$. The upward movement of inorganic nitrogen as well as laboratory during the course of freezing, but large amount of nitrogen was lost from the profile after thawing in early spring. Leached nitrogen from the upper 20cm to lower part was 17 to 24 percents. The maximum depth of leaching during the experiment was 50cm for all soils. The net loss of inorganic nitrogen from the whole profile ranged 8.7 to 39.5 percents. The net loss was greater in Daegwanryung where temperature was lower and snowfall was larger than Chuncheon, and the loss was greater from the silt loam soil than clay loam soil of which percolation rate was small. The results implied that reasons for nitrogen loss during the winter might include surface washing by snow melt as well as leaching and denitrification.

  • PDF

Experimental Study on behavior of the Lightweight Air-foamed Soil Considering Freezing-thawing and Soaking Conditions (동결융해 및 수침조건을 고려한 경량기포혼합토의 거동 실험 연구)

  • Kang, Daekyu;Shin, Eunchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.5
    • /
    • pp.37-46
    • /
    • 2016
  • In order to determine the variability of environmental characteristics of lightweight air-foamed soil using marine clay according to freezing-thawing and soaking conditions, unconfined compressive strength of the lightweight air-foamed soil samples made by changing the amount of cement under curing conditions of outdoor low temperature, underground or indoor wetting were observed. Compressive strength was not increased under freezing-thawing (temperature range of $-9.1^{\circ}C{\sim}17.2^{\circ}C$) regardless of the amount of cement but the more cement using, it was increased rapidly by underground curing conditions within 30 cm beneath ground level. Therefore, it is necessary to install insulation layer cutting off exterior cold air after construction of lightweight air-foamed soil in condition of freezing-thawing. Bulk density was increased too small under the long-time soaking condition, it tended to decrease rapidly when samples were dried up and had below 6% of water contents. But variability of compressive strength and bulk density was very small for preventing drying and keeping its wet state. The lightweight air-foamed soil that installed beneath ground water level or covered by soil can be evaluated as a long-term reliable construction material.

Study on the Thermal Conductivity of Frozen Soil Considering Various Experimental Conditions (다양한 실험조건을 고려한 동결 사질토의 열전도도 산정에 대한 연구)

  • Kim, Hee-Won;Go, Gyu-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.9
    • /
    • pp.5-11
    • /
    • 2023
  • In analyzing geotechnical structures, the analysis fields are becoming increasingly diversified. In particular, the need for predicting the thermal behavior of ground materials has become important in fields related to soil freezing. To ensure a reliable assessment of the freezing behavior of the ground, considering the variation in the effective thermal conductivity of soil specimens under various conditions is crucial. In this study, probe experiments were conducted by varying the porosity, initial degree of saturation, and read time settings of the meter. Next, the factors influencing the effective thermal conductivity of the frozen sandy soil were evaluated. The experimental results conducted under different porosity conditions showed a tendency for the effective thermal conductivity of frozen soil to increase as the specimen's porosity decreased. However, as the degree of saturation of the specimen increased, the effective thermal conductivity also increased. The sensitivity of the meter's read time setting to the measurement of effective thermal conductivity was observed. When the read time was set to 1 min, the measured values were in a range similar to that obtained in previous studies conducted in Korea with the same soil specimen.