• Title/Summary/Keyword: Soil drying

Search Result 229, Processing Time 0.028 seconds

Assessment of the unconfined compression strength of unsaturated lateritic soil using the UPV

  • Wang, Chien-Chih;Lin, Horn-Da;Li, An-Jui;Ting, Kai-En
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.339-349
    • /
    • 2020
  • This study investigates the feasibility of using the results of the UPV (ultrasonic pulse velocity) test to assess the UCS (unconfined compressive strength) of unsaturated soil. A series of laboratory tests was conducted on samples of unsaturated lateritic soils of northern Taiwan. Specifically, the unconfined compressive test was combined with the pressure plate test to obtain the unconfined compressive strength and its matric suction (s) of the samples. Soil samples were first compacted at the designated water content and subsequently subjected to the wetting process for saturation and the following drying process to its target suction using the apparatus developed by the authors. The correlations among the UCS, s and UPV were studied. The test results show that both the UCS and UPV significantly increased with the matric suction regardless of the initial compaction condition, but neither the UCS nor UPV obviously varied when the matric suction was less than the air-entry value. In addition, the UCS approximately linearly increased with increasing UPV. According to the investigation of the test results, simplified methods to estimate the UCS using the UPV or matric suction were established. Furthermore, an empirical formula of the matric suction calculated from the UPV was proposed. From the comparison between the predicted values and the test results, the MAPE values of UCS were 4.52-9.98% and were less than 10%, and the MAPE value of matric suction was 17.3% and in the range of 10-20%. Thus, the established formulas have good forecasting accuracy and may be applied to the stability analysis of the unsaturated soil slope. However, further study is warranted for validation.

Boron deficiency of sunflower (Helianthus annuus.) (해바라기의 붕소결핍(硼素缺乏))

  • Park, Hoon;Yu, Ik Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.8 no.4
    • /
    • pp.195-198
    • /
    • 1975
  • Boron deficiency appeared as a cause of poor growth of sunflower(Helianthus annuus) according to soil and plant analysis. The investigated results are as follows; 1. Boron deficiency was due to low content of available boron (hot water soluble) in soil and clitical concentration appeared as 0.17 ppm. 2. Clitical concentrations in plant appeared to be 20 ppm for head(flower), 25 for leaf, 15 for stem and 10 for root. Boron concentration among positional leaves was greatly decreasing in the upper leaves. 3. Soils low in boron were relatively higher in calcium, silica and pH than in normal soil but relationship between boron and organic matter or other nutrients was uncertain. 4. The content of Ca and P is high in the head of boron deficient plant but low in root. Plants deficient in boron also showed a tendency of high N and low K but no clear tendency was shown in Mg and Fe. 5. Symptoms of boron deficinicy were yellowing of upper leaves, browning and drying of upper part of stem, cracking and blackening of stem and roots resulting short stem and poor growth.

  • PDF

Experimental Study on the Hysteresis of Suction Stress in Unsaturated Sand (불포화 모래의 흡입응력 이력현상에 대한 실험적 연구)

  • Song, Young-Suk;Choi, Jin-Su;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.22 no.2
    • /
    • pp.145-155
    • /
    • 2012
  • The matric suction and volumetric water content of Jumunin standard sand with a relative density of 60% were measured using an Automated Soil-Water Characteristic Curve (SWCC) apparatus during both drying and wetting processes. The test time for the drying process was longer than that for the wetting process, because the flow of water is likely to be protected by air trapped in voids within the soils during the drying process. Based on the matric suction and volumetric water content, the SWCC was estimated using the model proposed by van Genuchten (1980). For the drying process, the unsaturated fitting parameters ${\alpha}$, n, and m were 0.399, 8.586, and 0.884, respectively; for the wetting process, the values were 0.548, 5.625, and 8.220, respectively. The hysteresis phenomenon occurred in the SWCCs, which means the SWCC of the drying process is not matched with the SWCC of the wetting process. Using these unsaturated parameters, we estimated the Suction Stress Characteristic Curve (SSCC), based on the relationship between suction stress and the effective degree of saturation. The suction stress showed a rapid decrease when the matric suction exceeds the Air Entry Value (AEV). Therefore, the effective stress of unsaturated soils is different from that of saturated soils when the matric suction exceeds the AEV. The suction stress of the drying process exceeds that of the wetting process for a given effective degree of saturation. The hysteresis phenomenon was also recognized in SSCCs. The hysteresis phenomenon of SSCCs arises from that of SWCCs, which is induced by the ink bottle effect and the contact angle effect. In the case of a sandy slope, the suction stress is positive and acts to enhance the slope stability as the water infiltrates the ground, but is negative when the suction stress exceeds the AEV. The results obtained for the wetting process should be applied in analyses of slope stability, because the process of water infiltration into ground is similar to the wetting process.

Environmental Exposure to Tobacco-specific Nitrosamines in an Area Near a Fertilizer Plant (비료제조공장 인근 지역의 담배특이니트로사민 환경 노출)

  • Ha, Jae-Na;Yoon, Mi-Ra;Chang, Jun Young;Koh, Dohyun;Shin, Ho-Sang;Kim, Suhyang;Lee, Chul-Woo;Lee, Bo-Eun;Kim, Jeong-Soo
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.4
    • /
    • pp.398-409
    • /
    • 2020
  • Objectives: This study aimed to evaluate environmental exposure to tobacco-specific nitrosamines (TSNAs) by conducting an analysis of the concentration of TSNAs in deposited dust collected from a fertilizer plant and the surrounding village, a simulation of high-temperature drying of tobacco waste, and CALPUFF modeling. Methods: The raw materials of the products, deposited dust (inside and outside the plant and residential area), soil, and wastewater were sampled and the TSNA concentrations were analyzed by LC-MS/MS. As the plant was closed down before the investigation, simulation tests were conducted to confirm the substances discharged during high-temperature (300℃) drying of tobacco waste. CALPUFF modeling was performed to identify the area of influence due to exposure to TSNAs. Results: TSNAs were detected in organic fertilizers estimated to contain tobacco waste, deposited dust, and soil collected from inside and outside the plant. N'-nitrosonornicotine (NNN), 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK), and N'-nitrosoanatabine (NAT) components were detected in five of 15 deposited dust samples collected from the residential area around the plant, while TSNAs were not detected in the five sampling points in the control area. Also, the simulation test for the high temperature drying of tobacco waste found emissions of TSNAs. The CALPUFF modeling results showed that the survey area was likely to be included in the area of influence of TSNA emissions from the plant. Conclusions: It is estimated that harmful tobacco ingredients such as TSNAs were dispersed in nearby areas due to the illegal use of tobacco waste as a raw material to produce organic fertilizers at the plant. These findings assume that the residents have been exposed to TSNAs and suggest that the need for the establishment of measures to manage environmental health.

Assessment of the Hydraulic Conductivity of the Furnace Slag Coated with the Mixture of Bentonite-sepiolite-guargum under Sea Water Condition (벤토나이트-해포석-구아검 혼합물질이 코팅된 제강슬래그의 해수에 대한 투수성 평가)

  • Cheong, Eui-Seok;Rhee, Sung-Su;Woo, Hee-Soo;Park, Jun-Boum
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.4
    • /
    • pp.1-9
    • /
    • 2011
  • Bentonite has been generally used as vertical cutoff barrier material and reported to have several problems regarding its low workability, drying shrinkage cracking by particle cohesion, and ineffective waterproof ability under sea water condition. In this study, the particle sealant, the furnace slag coated by the mixture of bentonite, sepiolite and guargum, was developed to compensate these weak points and the hydraulic conductivity of the particle sealant was evaluated. Drying shrinkage cracking and swelling index was estimated to find the optimal mixing ratio of bentonite, sepiolite and guargum. The hydraulic conductivity of the particle sealants having different amount of sealant (bentonite-sepioliteguargum mixture) coating the furnace slag was estimated using the rigid wall permeameter and flexible wall permeameter. The results showed that drying shrinkage cracking was not found in the bentonite-sepiolite mixture with 20% sepiolite contents and the results from free swelling tests for the sealant having 1 : 0.025, 1 : 0.05 and 1 : 0.075 of weight ratios of bentonite-sepiolite mixture and guargum under simulated sea water condition were higher than those for the bentonitesepiolite mixture without guargum under tap water condition. These three sealants were coated on the furnace slag with 50% and 60% of sealant in the particle sealant and the hydraulic conductivity was estimated. In the cases of the particle sealants having 20% sepiolite in the bentonite-sepiolite mixture and 1 : 0.075 weight ratio of the bentonite-sepiolite mixture and guargum, the hydraulic conductivity from the rigid wall permeameter was below $1.0{\times}10^{-7}$ cm/sec under simulated sea water condition. The hydraulic conductivity of the particle sealant having $1.0{\times}10^{-6}$~$1.0{\times}10^{-7}$ cm/sec by the rigid wall permeameter was estimated using the flexible wall permeameter and found to be below $1.0{\times}10^{-7}$ cm/sec.

Evaluation of Erosion Resistance Capability with Adhesive Soil Seeding Media (접착성 식생기반재의 침식저항능력 평가)

  • Seong, Si-Yung;Shin, Eun-Cheol
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.2
    • /
    • pp.71-79
    • /
    • 2015
  • This paper describes vegetation based soil-media hydroseeding measures that have been previously applied as slope revegetation methods show problems such as insufficient binding force, drying, and insufficient organic matter. In particular, in the case of slope faces in regions where scattering is severe, a vicious circle exists in which remarkably low vegetation cover rates and increases in withering rates over time lead to further decreases in vegetation cover rates, which lead to further increases in erosion and scattering. Therefore, in the present study, environment friendly soil stabilizers were applied for resistance against erosion or scattering and engineering evaluations such as long-term immersion tests and flow resistance tests were conducted to determine appropriate mixing ratios. According to the results of long-term immersion tests utilizing environment friendly soil stabilizers and existing greening soil based materials, 100% collapse occurred at 30 hours and 40 days in the case of soil stabilizer mixing ratios of 0% and 2%, respectively. While the original form of the samples remained intact until the experiment was completed in the case of mixing ratios exceeding 4% indicating that 2% or higher soil stabilizer mixing ratios could affect the maintenance of forms even under extreme conditions. In addition, artificial rainfall tests were conducted on 40, 45, and 55 degree slope faces to evaluate the structural stability of vegetation based materials. Flow resistance tests were conducted on soil stabilizer mixing ratios of 0, 4, 8% to evaluate erosion resistance capability. Based on the results of the tests, environment friendly soil stabilizers applied for prevention of scattering or resistance against erosion by rainwater are considered to provide large effects to reduce losses and loss rates showed a tendency of decreasing rapidly when soil stabilizers were mixed.

Changes in Chemical Property of Soil Affected by Termites (Reticulitermes speratus kyushuensis Morimoto) in Korea (국내 흰개미(Reticulitermes speratus kyushuensis Morimoto)에 의한 토양의 화학적 특성 변화)

  • Seong, Se Ha;Kim, Keun Ki;Hong, Chang Oh;Park, Hyean Cheal
    • Journal of Environmental Science International
    • /
    • v.26 no.6
    • /
    • pp.789-795
    • /
    • 2017
  • Termites (Isoptera) are classified into approximately 3,106 species. In Korea, only one species has been identified, which is Reticulitermes speratus kyushuensis Morimoto. The termite, a social insect, is known to play an important role in nutrient cycling of the ecosystem, although some species of termites are well-known pests attacking wooden structures or any plant materials. However, there is a lack of research about termites in Korea, including aspects such the taxonomy, physiology, and ecology of termites. This study was carried out to provide valuable basic data on the ecological role of termites in an ecosystem in Korea for the future studies. For the experiments, soil and termite samples were randomly collected from Mt. Hwajang located in Jikdong-ri, Eonyang-eup, Ulju-gun, Korea between October 5 and 30, 2015. Analysis results showed that there were no significant differences in soil chemical properties between the soil samples just after air-drying and one year elapsed without any treatment. The treated soil with termites showed significantly higher than the soil without termite treatment. Chemical properties of total nitrogen, organic matter, available phosphate, pH, Calcium(Ca), Potassium(K) and Magnesium(Mg) in soil treated with termites were $1.11{\pm}0.3gkg^{-1}$, $43.3{\pm}12.4gkg^{-1}$, $27.4{\pm}2.9mgkg^{-1}$, $4.56{\pm}0.2$, $0.82{\pm}0.2cmol_ckg^{-1}$, $3.18{\pm}1.4cmol_ckg^{-1}$, $1.73{\pm}1.1cmol_ckg^{-1}$, respectively. The values of soil property of without termite treatment were $0.56{\pm}0.1gkg^{-1}$, $30.5{\pm}3.1gkg^{-1}$, $24.0{\pm}4.7 mgkg^{-1}$, $4.09{\pm}0.1$, $0.71{\pm}0.2cmol_ckg^{-1}$, $2.88{\pm}1.5cmol_ckg^{-1}$, $1.30{\pm}0.7cmol_ckg^{-1}$, respectively. These results suggest that inhabitation of termites could improve soil chemical properties in an ecosystem.

Mobility of Nitrate and Phosphate through Small Lysimeter with Three Physico-chemically Different Soils (소형 라이시메터시험을 통한 토양특성에 따른 질산과 인산의 이동성 비교)

  • Han, Kyung-Hwa;Ro, Hee-Myong;Cho, Hyun-Jun;Kim, Lee-Yul;Hwang, Seon-Woong;Cho, Hee-Rae;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.4
    • /
    • pp.260-266
    • /
    • 2008
  • Small lysimeter experiment under rain shelter plastic film house was conducted to investigate the effect of soil characteristics on the leaching and soil solution concentration of nitrate and phosphate. Three soils were obtained from different agricultural sites of Korea: Soil A (mesic family of Typic Dystrudepts), Soil B (mixed, mesic family of Typic Udifluvents), and Soil C (artificially disturbed soils under greenhouse). Organic-C contents were in the order of Soil C ($32.4g\;kg^{-1}$) > Soil B ($15.0g\;kg^{-1}$) > Soil A ($8.1g\;kg^{-1}$). Inorganic-N concentration also differed significantly among soils, decreasing in the order of Soil B > Soil C > Soil A. Degree of P saturation (DPS) of Soil C was 178%, about three and fifteen times of Soil B (38%) and Soil A (6%). Prior to treatment, soils in lysimeters (dia. 300 mm, soil length 450 mm) were tabilized by repeated drying and wetting procedures for two weeks. After urea at $150kg\;N\;ha^{-1}$ and $KH_2PO_4$ at $100kg\;P_2O_5\;ha^{-1}$ were applied on the surface of each soil, total volume of irrigation was 213 mm at seven occasions for 65 days. At 13, 25, 35, 37, and 65 days after treatment, soil solution was sampled using rhizosampler at 10, 20, and 30 cm depth and leachate was sampled by free drain out of lysimeter. The volume of leachate was the highest in Soil C, and followed by the order of Soils A and B, whereas the amount of leached nitrate had a reverse trend, i.e. Soil B > Soil A > Soil C. Soil A and B had a significant increase of the nitrate concentration of soil solution at depth of 10 cm after urea-N treatment, but Soil C did not. High nitrate mobility of Soil B, compared to other soils, is presumably due to relatively high clay content, which could induce high extraction of nitrate of soil matrix by anion exclusion effect and slow rate of water flow. Contrary to Soil B, high organic matter content of Soil C could be responsible for its low mobility of nitrate, inducing preferential flow by water-repellency and rapid immobilization of nitrate by a microbial community. Leached phosphate was detected in Soil C only, and continuously increased with increasing amount of leachate. The phosphate concentration of soil solution in Soil B was much lower than in Soil C, and Soil A was below detection limit ($0.01mg\;L^{-1}$), overall similar to the order of degree of P saturation of soils. Phosphate mobility, therefore, could be largely influenced by degree of P saturation of soils but connect with apparent leaching loss only more than any threshold of P accumulation.

Determination of the Soil-water Characteristic Curve Using the Flow Pump Technique (피스톤 펌프 기법을 이용한 흙-수분 특성곡선 측정방법)

  • 황창수;김태형
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.155-162
    • /
    • 2003
  • The soil-water characteristic curve (SWCC) represents the essential constitutive relationship for solving various problems in unsaturated soil mechanics. A reliable and convenient experimental method is needed for the determination of the SWCC in engineering applications. This study introduces and proves that the suction-saturation experimental measurement based on the flow pump technique is a convenient and accurate method for obtaining the SWCC. The flow pump technique provides complete control over the test conditions and is capable of detecting all the important elements of the SWCC. In particular, it is capable of defining continuous drying and wetting curves, the moment of air occlusion, and the hysteretic behavior of unsaturated soils. Not only the optimal testing procedure but also the analysis technique for the flow pump technique has been established in this study. Especially, the method of the suction drop measurement was developed to measure the SWCC. This method is a convenient and time saving method without losing accuracy.

Assessment of Overconsolidation Ratio by Depth of Soft Ground: A Case Study in South Korea (국내 연약지반의 심도별 과압밀비 산정에 관한 사례연구)

  • Lee, Jong-Young;Han, Jung-Geun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.9-18
    • /
    • 2021
  • In this study, the overconsolidation ratio (OCR) of soft clay soil was calculated by conducting an indoor physical experiment and a dynamics test using undisturbed soil samples from a soft clay soil field in South Korea. The OCR by depth was predicted by comparing the experimental results with the existing empirical equations. Methods using the liquidity index and the existing empirical equation by the Naval Facilities Engineering Systems Command (NAVFAC) were examined, and the results were compared with the actual measured values. The method using the liquidity index was found to be suitable for estimating the rough OCR of the ground. However, the effect of drying was not considered for the ground above the groundwater level. Therefore, an equation for the correlation equation between the depth and OCR of each region, including the ground above the groundwater level, was proposed. The proposed equation was applied to the OCR prediction of the adjacent area. The predicted values in the area composed of clay (CL, CH) were found to be in good agreement with the actual values. In the region composed of silt (ML), however, the predicted values were not consistent with the actual values. This suggests that the sedimentation and compositional characteristics, rather than the engineering characteristics of the soil, are important factors that affect the OCR prediction.