• Title/Summary/Keyword: Soil disaster

Search Result 481, Processing Time 0.027 seconds

The Influence of Soil Content on the Settlement Behavior of Gravel Embankement (토사 함량에 따른 자갈 성토재료의 침하특성 분석)

  • Suhyung Lee;Jiho Kim;Beomjun Kim;Chanyoung Yune
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.11
    • /
    • pp.41-49
    • /
    • 2023
  • In this study, we analyzed the settlement characteristics of rockfill embankments mixed with soil by confirming the physical properties of soil materials mixed with silty materials and analyzing the compression characteristics of gravel materials according to the mixing ratio of soil materials. For this, we mixed silty materials into sandy soil to analyze the compression characteristics of soil materials, and we constructed a foundation by mixing various ratios of soil into rockfill materials with a particle distribution similar to that of river gravel, and conducted a one-dimensional compression experiment using a medium-sized chamber. As a result of the experiment, in the case of mixed soil materials, the Transition Fine Content (TFC) appeared in the range of 21~26% depending on the load condition, and in the case of rockfill materials mixed with soil, as the void filling ratio of soil in gravel samples increases, both total compression and creep compression decreases, but after a 50% mixing ratio, the settlement of amount increases again.

A Study on Construction and Applicability on of Smart Pole Measuring System for Monitoring Steep Slope Sites (급경사지 모니터링을 위한 스마트폴 계측시스템 구축 및 적용성 연구)

  • Lee, Jin-Duk;Chang, Ki-Tae;Bhang, Kon-Joon
    • Journal of Korean Society of Disaster and Security
    • /
    • v.7 no.2
    • /
    • pp.1-8
    • /
    • 2014
  • Smart Pole Measurement System was constructed with not only the core sensors of a GNSS receiver, a TRS sensor and a soil moisture sensor but supplementary installation of power supply and radio communication for monitoring steep slope sites. Also a data processing software for displacement extraction and visualization was developed. Smart Pole Measurement sensor is composed of a GNSS antenna at the top of the pole, a TRS sensor and a gyro sensor vertical below right of the antenna and a soil moisture sensor at the bottom of the pole. The sensor combination extracts not only ground combination in real time but transltion, slide, settlement and soil moisture content. This measuring/monitoring system which cosists of data receiving part, data collection/transfer part and data processing part was built to exercise their functions and then test measuring/monitoring was conducted by introducing artificial displacement and the results were analyzed to evaluate field applicability.

SEMMA Revision to Evaluate Soil Erosion on Mountainous Watershed of Large Scale (대규모 산지유역 토양침식 평가를 위한 SEMMA 개선)

  • Shin, Seung Sook;Park, Sang Deog;Lee, Jong Seol;Lee, Kyu Song
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.9
    • /
    • pp.885-896
    • /
    • 2013
  • SEMMA (Soil Erosion Model for Mountain Areas) should be revised to apply on mountain watershed of large scale. In this study, the basic structure of original SEMMA and methods to calculate main parameters are reviewed and the revised parameters are presented to expand a range of application. SEMMA-Ic is new model revised by a rate of vegetation cover which is substituted for index of vegetation structure to use specially NDVI for large scale areas. The correlation coefficient and the Nash-Sutcliffe simulation efficiency for the revised model decreased rather than those of original model. However the evaluation of the revised model on watershed showed the approximate simulation with measured sediment yield and the underestimated simulation when sediment yield is large. The additional research for channel erosion is needed so that soil erosion model for hillslopes is used to estimate sediment yield from a watershed.

Evaluation of Geogrid-Reinforced Track substructure Effectiveness Using A Large-Scale Pullout Device (대형인발시험기를 이용한 지오그리드로 보강된 궤도하부구조층의 효율성 평가)

  • Oh, Jeongho
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.1
    • /
    • pp.40-48
    • /
    • 2014
  • A number of attempts has been made to reinforce ballasted track substructure to meet the requirement of high-speed operation and effective rehabilitation of existing railroads. For the purpose of this, the use of geogrid has been applied, and the benefit of its use has been recognized via previous studies. In this study, an experimental pullout test was carried out to investigate the influence of normal stress on pullout strength of geogrid using different types of soil and geogrid. The results revealed that the pullout resistance generally tends to increase proportional to normal stress while the pullout coefficient interaction decreases, which is a function of material interface properties, such as the friction angle of soil, and interlocking condition between soil and geogrid. In addition, a methodology based on work-energy concept was proposed to evaluate effectiveness of geogrid and limitedly verified using test results.

Calculation models and stability of composite foundation treated with compaction piles

  • Cheng, Xuansheng;Jing, Wei
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.929-946
    • /
    • 2017
  • Composite foundation treated with compaction piles can eliminate collapsibility and improve the bearing capacity of foundation in loess area. However, the large number of piles in the composite foundation leads to difficulties in the analysis of such type of engineering works. This paper proposes two simplified methods to quantify the stability of composite foundation treated with a large number of compaction piles. The first method is based on the principle of making the area replacement ratios of the simplified model as the same time as the practical engineering situation. Then, discrete piles arranged in a triangular shape can be simplified in the model where the annular piles and compacted soil are arranged alternately. The second method implements equivalent continuous treatment in the pile-soil area and makes the whole treated region equivalent to a type of composite material. Both methods have been verified using treated foundation of an oil storage tank. The results have shown that the differences in the settlement values obtained from the water filled test in the field and those calculated by the two simplified methods are negligible. Using stability analysis, the difference ratios of the static and dynamic safety factors of the composite foundation treated with compaction piles calculated by these two simplified methods are found to be 3.56% and 5.32%, respectively. At the same time, both static and dynamic safety factors are larger than the general safety factor, which should be greater than or equal to 2.0 according to the provisions in civil engineering. This indicates that after being treated with compaction piles, the bearing capacity of the composite foundation is effectively improved and the foundation has enough safety reserve.

Acquisition of Information on Road Cutting Slope Using Digital Imagery (디지털 영상을 이용한 도로 절취사면 정보 획득)

  • Lee, Jong-Chool;Kim, Jin-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.10
    • /
    • pp.1937-1943
    • /
    • 2007
  • Given the mountainous nature of Korea, cutting slopes are bound to happen. Every you, slope failures lead to enormous human and material losses. More recently, reckless development and subsequent degradation of forests has brought about soil erosion, which coupled with heavy rainfall, contaminates rivers, raises the level of river bottoms and thereby deteriorates their discharge capacity. In Korea, environmental impact assessments and disaster impact assessments have been conducted to come up with proper countermeasures. In order to perform quantitative analysis for this purpose, reliable slope information is quintessential. This study aims to obtain slope-related digital images using an RC model helicopter with a non-metric camera embedded, and to process these images to gain more accurate slope information. To this end, digital images obtained regarding cutting slopes were processed to gain numerical information of slopes and, on the basis of slope information gained here, reliable soil erosion factors were estimated.

Assessment of Landslide Causal Factors Using ANN Method (ANN 기법을 이용한 사면 붕괴인자 평가)

  • Song, Young-Karb;Jung, Min-Su;Oh, Jeong-Rim;Cha, A-Reum
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.10
    • /
    • pp.89-96
    • /
    • 2012
  • In this study landslide causal factors which are considered to have the same effect in assessment techniques are categorized and their impact on landslides is analyzed to acquire reasonable weighting factors in the landslide hazard. Results are compared to those of the Assessment Chart developed by National Institute for Disaster Prevention (NIDP) and the adequacy and proper portion for landslide causal factors are considered. The Artificial Neural Network (ANN) method applied to 28 landslide areas is incorporated to evaluate the reasonable rating. Results show that the following items in the Chart are necessary to modify their portions in order to implement the precise assessment results: 1) Estimated damage; 2) Tension crack; 3) Existence of valley.

Analysis of Debris Flow Affected Area Using Hyper KANAKO Model (Hyper KANAKO 모형을 이용한 토석류 피해지 분석)

  • Kang, Bae Dong;Jun, Kye Won;Kim, Young Hwan
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.1
    • /
    • pp.51-59
    • /
    • 2021
  • In Korea, where 64% of the soil is mountainous, typhoons and local rains concentrated in the summer season are frequent in mountainous disasters such as landslides and debris flow. The area of study was the area where the damage to the debris flow was caused by typhoon Mitag in October 2019, and all the houses located in the downstream area were damaged. In this study, numerical simulations were conducted on the area where the damage of earth and stone flow occurred using Hyper KANAKO model that can consider erosion and sedimentation, and the applicability of the model was examined by comparing the actual damage area and the analysis results of the model. As a result of the numerical simulation, the damage area of the debris flow in the target area was 53,875 m2, the maximum flow depth was 2.4 m, and the average flow depth was 1.7 m.

Consistency Analysis of Intermediate Soil Based on the Fines Contents (세립분 함유율에 따른 중간토의 컨시스턴시 분석)

  • Oh, Sewook;Bae, Wooseok;Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.6
    • /
    • pp.17-26
    • /
    • 2021
  • Ground investigation and result analysis generally used to examine all sorts of structures' subsidence or stability can be classified into sandy soil and cohesive soil, and analysis on the liquid limit of soil is utilized to evaluate the physical properties of ground and types or technical behavior of soil. The most widely used method to analyze liquid limit is Casagrande with which liquid limit can be calculated relatively easily; however, it is fairly difficult to apply it to soil equipped with intermediate properties. Therefore, concerning the properties of soil having the intermediate properties of sedimentary ground, this researcher mixed the clay from Yangsan, Gwangyang, and Busan with sandy soil to make intermediate soil and then carried out the test of consistency limit and also evaluated applicability by using the suggested formula of consistency revision. The sample of intermediate soil was the mixture of clay and sandy soil, and to produce intermediate soil, the content (Fc) of fine soil was applied as 50%, 75%, or 100%. Regarding the physical properties of intermediate soil, to maintain the properties of clay in the natural state, bentonite was added at a fixed rate for controlling the properties of clay, and then, consistency was analyzed. By adopting the formula of consistency revision suggested in advanced research, this author analyzed consistency based on the experiment and consistency based on the suggested formula of revision. Also, about intermediate soil collected at the site, consistency based on the experiment and consistency based on the suggested formula of revision were analyzed comparatively, and about intermediate soil collected, this researcher analyzed particle size and calculated the content (Fc) of fine soil to analyze intermediate soil in diverse conditions. Moreover, about intermediate soil collected at the site, the suggested formula of consistency revision was applied to calculate the compression index, and the compression index based on the experiment and the compression index based on the suggested formula were analyzed comparatively to evaluate the applicability of the suggested formula.

Meteorological Determinants of Forest Fire Occurrence in the Fall, South Korea

  • Won, Myoung-Soo;Miah, Danesh;Koo, Kyo-Sang;Lee, Myung-Bo;Shin, Man-Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.2
    • /
    • pp.163-171
    • /
    • 2010
  • Forest fires have potentials to change the structure and function of forest ecosystems and significantly influence on atmosphere and biogeochemical cycles. Forest fire also affects the quality of public benefits such as carbon sequestration, soil fertility, grazing value, biodiversity, or tourism. The prediction of fire occurrence and its spread is critical to the forest managers for allocating resources and developing the forest fire danger rating system. Most of fires were human-caused fires in Korea, but meteorological factors are also big contributors to fire behaviors and its spread. Thus, meteorological factors as well as social factors were considered in the fire danger rating systems. A total of 298 forest fires occurred during the fall season from 2002 to 2006 in South Korea were considered for developing a logistic model of forest fire occurrence. The results of statistical analysis show that only effective humidity and temperature significantly affected the logistic models (p<0.05). The results of ROC curve analysis showed that the probability of randomly selected fires ranges from 0.739 to 0.876, which represent a relatively high accuracy of the developed model. These findings would be necessary for the policy makers in South Korea for the prevention of forest fires.