• Title/Summary/Keyword: Soil disaster

Search Result 478, Processing Time 0.022 seconds

Parcel based Information System for Sediment Disaster by using Mobile GIS (모바일 GIS를 이용한 필지별 토사재해정보시스템 개발)

  • Lee, Geun-Sang;Choi, Yun-Woong
    • Journal of Cadastre & Land InformatiX
    • /
    • v.46 no.1
    • /
    • pp.59-74
    • /
    • 2016
  • The collapses of retaining walls or embankments, the soil erosion and landslides around urban areas are occurring by heavy rainfalls because of the recent climate change. This study conducts the soil erosion modeling, while applying the spatial information such as soil maps, DEM and landcover maps to the RUSLE model. Especially this study draws up the soil erosion grade map and the unit soil erosion grade map by parcels through coupling the soil erosion with the cadastral map, and by that can calculate the number of parcels by soil erosion grades. Also the sediment disaster information system based on the mobile GIS is developed to identify the soil erosion grades of site in the urban plannings and the construction fields. The sediment disaster information system can identify the present conditions of the registers of lands, buildings and roads, and confirm the RUSLE factors, the soil erosion, the sediment disaster grades by parcels. Also it is anticipated that this system can support the sediment disaster work of site effectively through searching the locations and attributes of the specific parcels by Administrative Dong and the soil erosion grades.

Assessment of Soil Erosion Loss by Using RUSLE and GIS in the Bagmati Basin of Nepal

  • Bastola, Shiksha;Seong, Yeon Jeong;Lee, Sang Hyup;Shin, Yongchul;Jung, Younghun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.3
    • /
    • pp.5-14
    • /
    • 2019
  • This study attempted to study the soil erosion dynamic in the Bagmati Basin of Nepal. In this study, an inclusive methodology that combines Revised Universal Soil Loss Equation (RUSLE) and GIS techniques was adopted to determine the distribution of soil loss in the study basin. As well, this study attempts to study the intensity of soil erosion in the seven different land use patterns in the Bagmati Basin. Soil loss is an associated phenomenon of hydrologic cycle and this dynamic phenomenon possesses threats to sustainability of basin hydrology, agriculture system, hydraulic structures in operation and overall ecosystem in a long run. Soil conservation works, and various planning and design of watersheds works demands quantification of soil loss. The results of the study in Bagmati Basin shows the total annual soil loss in the basin is 22.93 million tons with an average rate of 75.83T/ha/yr. The computed soil loss risk was divided into five classes from tolerable to severe and the spatial pattern was mapped for easy interpretation. Also, evaluation of soil loss in different land use categories shows barren area has highest rate of soil loss followed by agriculture area. This is a preliminary work and provides erosion risk scenario in the basin. The study can be further used for strategic planning of land use and hydrologic conservation works in a basin.

The Estimation of Soil Erosion Fact of Cutting Slope Using Digital Image (디지털 영상을 이용한 절취단면의 토사유출인자 산정)

  • Lee Jong-Chool;Yang Won-Young;Heo Jong-Ho;Cho Yong-Jae
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.527-531
    • /
    • 2006
  • Recently, the development project is conducting disaster effect estimation to breed disaster, and cope these disaster beforehand provoking soil erosion and flood. Therefore, it is became important to analysis and reduce of these disaster. In this study, receive value of LS and C factor of soil erosion through the digital image. The method of photogrammetry was employed for the efficient surveying and analysis of cutting slope using Remote Control Helicopter installed with a nonmetric digital camera. As a result, we obtain more objectivity value of soil erosion factor using digital image analysis.

  • PDF

Evaluation of Slope Stability of Taebaeksan National Park using Detailed Soil Map (정밀토양도를 이용한 태백산국립공원의 사면안정성 평가)

  • Kim, Young-Hwan;Jun, Byong-Hee;Jun, Kye-Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.2
    • /
    • pp.65-72
    • /
    • 2019
  • More than 64% of Korea's land is occupied by mountain regions, which have terrain characteristics that make it vulnerable to mountain disasters. The trails of Taebaeksan Mountain National Park-the region considered in this study-are located in the vicinity of steep slopes, and therefore, the region is vulnerable to landslides and debris flow during heavy storms. In this study, a slope stability model, which is a deterministic analysis method, was used to examine the potential occurrence of landslides. According to the soil classification of the detailed soil map, the specific weight of soil, effective cohesion, internal friction angle of soil, effective soil depth, and ground slope were used as the parameters of the model, and slope stability was evaluated based on the DEM of a 1 m grid. The results of the slope stability analysis showed that the more hazardous the area was, the closer the ratio of groundwater/effective soil depth is to 1.0. Further, many of the private houses and commercial facilities in the lower part of the national park were shown to be exposed to danger.

Spatial Variability of Soil Moisture and Irrigation Scheduling for Upland Farming (노지 작물의 적정 관개계획을 위한 토양수분의 공간변이성 분석)

  • Choi, Yonghun;Kim, Minyoung;Kim, Youngjin;Jeon, Jonggil;Seo, Myungchul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.5
    • /
    • pp.81-90
    • /
    • 2016
  • Due to droughts and water shortages causing severe damage to crops and other vegetations, much attention has been given to efficient irrigation for upland farming. However, little information has been known to measure soil moisture levels in a field scale and apply their spatial variability for proper irrigation scheduling. This study aimed to characterize the spatial variability and temporal stability of soil water contents at depths of 10 cm, 20 cm and 30 cm on flat (loamy soil) and hill-slope fields (silt-loamy soil). Field monitoring of soil moisture contents was used for variogram analysis using GS+ software. Kriging produced from the structural parameters of variogram was applied for the means of spatial prediction. The overall results showed that the surface soil moisture presented a strong spatial dependence at the sampling time and space in the field scale. The coefficient variation (CV) of soil moisture was within 7.0~31.3 % in a flat field and 8.3~39.4 % in a hill-slope field, which was noticeable in the dry season rather than the rainy season. The drought assessment analysis showed that only one day (Dec. 21st) was determined as dry (20.4 % and 24.5 % for flat and hill-slope fields, respectively). In contrary to a hill-slope field where the full irrigation was necessary, the centralized irrigation scheme was appeared to be more effective for a flat field based on the spatial variability of soil moisture contents. The findings of this study clearly showed that the geostatistical analysis of soil moisture contents greatly contributes to proper irrigation scheduling for water-efficient irrigation with maximal crop productivity and environmental benefits.

Experimental Study on Establishing Measurement Management Criteria for Soil Slope Failure by Using Reduction-Scale and Full-Scale Slope Experiments: Based on Matric Suction (소형 및 실규모 급경사지 실험을 통한 계측관리기준 개발을 위한 실험적 연구: 모관흡수력을 기준으로)

  • Hyo-Sung Song;Young-Hak Lee;Seung-Jae Lee;Jae-Jung Kim
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.555-571
    • /
    • 2023
  • Due to South Korea's concentrated summer rainfall, constituting 70% of the annual total, landslides frequently occur during the rainy season, necessitating accurate prediction methods to mitigate associated damage. In this study, a reduced-scale and full-scale slope was configured using weathered granite soil to find the possibility of establishing measurement management criterias through landslide reproduction. The experiment focused on matric suction, analyzing changes in ground properties and failure patterns caused by rainfall infiltration. Subsequently, an unsaturated infinite slope stability analysis was conducted. By calculating the failure time when the safety factor falls below 1 for each experiment, landslide prediction was demonstrated to be possible, approximately 17 minutes prior for the reduction-scale experiment and 6.5 hours for the full-scale experiment. These findings provide useful data for establishing Korean soil slope measurement management criteria that consider the characteristics of weathered granite soil.

Experimental study on tuned liquid damper performance in reducing the seismic response of structures including soil-structure interaction effect

  • Lou, Menglin;Zong, Gang;Niu, Weixin;Chen, Genda;Cheng, Franklin Y.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.3
    • /
    • pp.275-290
    • /
    • 2006
  • In this paper, the performance of a tuned liquid damper (TLD) in suppressing the seismic response of buildings is investigated with shake table testing of a four-story steel frame model that rests on pile foundation. The model tests were performed in three phases with the steel frame structure alone, the soil and pile foundation system, and the soil-foundation-structure system, respectively. The test results from different phases were compared to study the effect of soil-structure interaction on the efficiency of a TLD in reducing the peak response of the structure. The influence of a TLD on the dynamic response of the pile foundation was investigated as well. Three types of earthquake excitations were considered with different frequency characteristics. Test results indicated that TLD can suppress the peak response of the structure up to 20% regardless of the presence of soils. TLD is also effective in reducing the dynamic responses of pile foundation.

The Estimation of Soil Erosion Factors of Cutting Slope using RC Helicopter Image (무선조종 헬기 영상을 이용한 절취단면의 토사유출인자 산정)

  • Cho, Yong-Jae;Lee, Young-Do;Jung, Beom-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.2
    • /
    • pp.82-90
    • /
    • 2007
  • Recently, the development project is conducting disaster effect estimation to breed disaster, and cope these disaster beforehand provoking soil erosion and flood. Therefore, it is important to analyze and reduce of these disaster. In this study, it is intended to extract LS and C factors of soil erosion through the digital image. The photogrammetric technique, which employs the Remote Control Helicopter equipped with a non-metric digital camera, was used for the efficient survey and analysis of cutting slopes. As a result, we obtain more objective value of soil erosion factor using digital image.

  • PDF

Implementation of Polyacrylamide in the Agricultural Environment and its Recent Review

  • Choi, Yonghun;Kim, Minyoung;Kim, Youngjin;Jeon, Jonggil;Seo, Myungchul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.440-448
    • /
    • 2016
  • Nonpoint sources of pollution (NPS) is defined as diffuse discharges of pollutants (e.g., nutrient, pesticide, sediment, and enteric microorganism) throughout the natural environment and they are associated with a variety of farming practices. Previous studies found that water soluble anionic polyacrylamide (PAM) is one of the highly effective measures for enhancing infiltration, reducing runoff, preventing erosion, controlling nonpoint source of pollutants, and eventually protecting soil and water environment. Potential benefits of PAM treatment in agricultural soil and water environments have been revealed by many research and they include low cost, easy and quick application, and suitability for use with other Best Management Practices (BMPs) for NPS control. This study reviews the various applications of PAM and discusses its further potentials in agricultural environment.

Radiological Assessment of Environmental Impact of the IF-System Facility of the RAON

  • Lee, Cheol-Woo;Whang, Won Tae;Kim, Eun Han;Han, Moon Hee;Jeong, Hae Sun;Jeong, Sol;Lee, Sang-jin
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.2
    • /
    • pp.58-65
    • /
    • 2021
  • Background: The evaluation of skyshine distribution, release of airborne radioactive nuclides, and soil activation and groundwater migration were required for radiological assessment of the impact on the environment surrounding In-Flight (IF)-system facility of the RAON (Rare isotope Accelerator complex for ON-line experiment) accelerator complex. Materials and Methods: Monte Carlo simulation by MCNPX code was used for evaluation of skyshine and activation analysis for air and soil. The concentration model was applied in the estimation of the groundwater migration of radionuclides in soil. Results and Discussion: The skyshine dose rates at 1 km from the facility were evaluated as 1.62 × 10-3 μSv·hr-1. The annual releases of 3H and 14C were calculated as 9.62 × 10-5 mg and 1.19 × 10-1 mg, respectively. The concentrations of 3H and 22Na in drinking water were estimated as 1.22 × 10-1 Bq·cm-3 and 8.25 × 10-3 Bq·cm-3, respectively. Conclusion: Radiological assessment of environmental impact on the IF-facility of RAON was performed through evaluation of skyshine dose distribution, evaluation of annual emission of long-lived radionuclides in the air and estimation of soil activation and groundwater migration of radionuclides. As a result, much lower exposure than the limit value for the public, 1 mSv·yr-1, is expected during operation of the IF-facility.