• 제목/요약/키워드: Soil decontamination

검색결과 56건 처리시간 0.031초

롤 컴팩션을 이용한 분말 방사성폐기물의 펠렛화 연구 (A Study on the Pelletization of Powdered Radioactive Waste by Roll Compaction)

  • 송종순;임상현;정민영;김기홍
    • 방사성폐기물학회지
    • /
    • 제17권2호
    • /
    • pp.203-212
    • /
    • 2019
  • 처분 부적합 폐기물이란 원전운영이나 해체 시 처리, 고화 및 포장이 요구되는 방사성폐기물 등을 일컬으며, 대표적으로 분산 특성을 갖는 입자성 방사성폐기물을 예로 들 수가 있다. 이들 폐기물에는 원전 운영과정에서 발생되는 농축폐액의 건조분말, 슬러리 및 슬러지, 향후 원전 해체과정에서 발생되는 온갖 분말 상태의 폐기물(콘크리트 파쇄물, 제염 슬러지 등), 그리고 제염이 용이치 못한 미세 크기의 방사능오염 토양 등이 있다. 입자성 폐기물을 기존의 고화방식으로 처리할 경우에는 최종 폐기물의 부피가 증가하는 단점을 갖게 되어 처분 비용의 증가 및 처분장의 수용성을 감소하는 결과를 야기할 수가 있다. 따라서 이들 문제를 해결하고자 본 연구에서는 최종 폐기물 부피의 감용화를 위해 롤 압축 기술을 이용하여 분말의 펠렛화 연구를 수행하였다.

염소계 화합물(TCE, PCE)로 오염된 토양 및 지하수 처리를 위한 실용적 고도산화처리시스템 개발 (I) (Development of Practical Advanced Oxidation Treatment System for Decontamination of Soil and Groundwater Contaminated with Chlorinated Solvent (TCE, PCE) : Phase I)

  • 손석규;이종열;정재성;이홍균;공성호
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제12권5호
    • /
    • pp.105-114
    • /
    • 2007
  • Advanced oxidation processes(AOPs)는 강력한 산화제인 hydroxyl radical(${\cdot}OH$)를 생성하여 오염물질을 산화시키는 기법이다. 본 연구에서는 DNAPL인 trichloroethylene(TCE)과 tetrachloroethylene(PCE)의 수리학적 특성을 고려하여 우수한 고도산화처리기법($UV/Fe^{3+}$-chelating agent/$H_2O_2$기법, $UV/H_2O_2$기법)의 적용성 평가를 실시하였다. TCE, PCE 처리에 있어 가장 높은 분해효율을 보인 기법은 $UV/H_2O_2$기법으로 pH 6의 중성조건에서 TCE의 경우 150분 만에 99.92%의 TCE 분해를 나타내었고($[H_2O_2]$ = 147 mM, UV dose = 17.4 kwh/L), PCE의 경우 반응 2시간에 99.99%가 분해되었다($[H_2O_2]$ = 29.4 mM, UV dose = 52.2 kwh/L). 또한, $UV/Fe^{3+}$-chelating agent/$H_2O_2$기법을 적용하였을 경우, TCE는 90분 만에 99.9% (UV dose = 34.8 kwh/L, $[Fe^{3+}]$ = 0.1 mM, [Oxalate] = 0.6 mM, $[H_2O_2]$ = 147 mM) PCE는 반응시간 6시간 만에 99.81% (UV dose = 17.4 kwh/L, $[Fe^{3+}]$ = 0.1 mM, [Oxalate] = 0.6 mM, $[H_2O_2]$ = 29.4 mM)의 빠른 분해경향을 보였다. 이러한 결과는 기존의 고도산화처리기법 중 modified Fenton 반응에 UV를 적용함으로서 반응 중 $H_2O_2$의 재생산을 증가시킬 수 있음을 보여주고 있다. 또한, Fe(III) 이온의 Fe(II) 이온으로의 환원을 용이하게 하여 기존 Fenton 반응에 비해 처리시간의 단축 및 분해효율의 향상을 기대할 수 있을 것이다. 그리고, oxalate나 acetate같은 저분자 유기산 착제의 적용으로 pH의 안정성과 분해효율의 향상이 가능하고, 철이온 및 oxalate나 acetate와 같은 물질이 자연상에 존재함에 따라 보다 경제적이고 친환경적인 실용적 처리기법 도출이 가능할 것이다.

배양기내(培養器內)에서 모래밭버섯균(菌)의 Cd 축적(蓄積)과 내성(耐性)에 관(關)한 연구(硏究) (A Study on the Cd Accumulation and Tolerance of Pisolithus Tinctorius in Vitro)

  • 한심희;이경준;현정오
    • 한국산림과학회지
    • /
    • 제90권1호
    • /
    • pp.83-89
    • /
    • 2001
  • 본 연구는 외생균근균 중 중금속에 대한 내성이 우수한 것으로 알려져 있는 모래밭버섯균의 Cd 축적과 내성 특성을 밝히고자 수행하였다. 모래밭버섯균은 1997년 전남 무안의 곰솔림에서 분리한 것으로 MMN 배지에 $CdSO_4{\cdot}5H_2O$을 0, 0.2, 0.5, 2, $10{\mu}g/m{\ell}$로 첨가하여 기내에서 배양하였다. 배양을 시작한 후 일주일 간격으로 24일 동안 생장량과 내성지수를 측정하였으며, 40일 후에는 균사를 수확하여 Cd 함량, superoxide dismutase(SOD) 활성, glutathione reductase(GR) 활성을 측정 하였다. 기내 배양된 모래밭버섯균은 Cd $2{\mu}g/m{\ell}$ 처리에서 생장이 감소하였으며, Cd $10{\mu}g/m{\ell}$의 처리에서는 생장이 거의 정지하였다. 대조구와 Cd 처리구의 생장량 비로 결정된 모래밭버섯균의 내성지수는 Cd 처리 농도가 증가함에 따라 점차 감소하는 경향을 나타냈으나 Cd $0.5{\mu}g/m{\ell}$와 Cd $2{\mu}g/m{\ell}$ 처리구에서는 14일 경과 후 다시 증가하였다. 모래밭버섯균의 균사내 Cd 농도는 Cd 처리 농도 증가에 따라 증가하였으며, 특히 Cd $10{\mu}g/m{\ell}$ 처리의 균사내 Cd 농도는 $854{\mu}g/g$으로, Cd $0.5{\mu}g/m{\ell}$ 처리구의 균사내 농도 $12.3{\mu}g/g$보다 70배 높았다. 모래밭버섯균의 SOD 활성은 Cd 농도별 처리간에 큰 차이를 보이지 않았다. 그러나 GR 활성은 Cd $0.5{\mu}g/m{\ell}$ 처리구에서 대조구보다 높았으며 Cd $2{\mu}g/m{\ell}$에서는 대조구보다 낮았다. 결론적으로 모래밭버섯균은 Cd의 흡수가 뛰어나며, Cd에 대한 내성은 비교적 저농도에서 항산화효소의 합성 증가와 같은 독성 제거 기작을 통하여 나타난다고 판단된다. 따라서 모래밭버섯균은 저농도로 오염된 중금속 오염지의 식생 복원에 이용이 가능하다고 본다.

  • PDF

아연폐광산(亞鉛廢鑛山) 주변(周邊) 토양(土壤)의 중금속(重金屬) (Cd, Cu, Zn, Pb) 오염(汚染)에 따른 5개(個) 수종(樹種)의 부위별(部位別) 중금속(重金屬) 축적(蓄積) (Accumulation of Heavy Metals(Cd, Cu, Zn, and Pb) in Five Tree Species in Relation to Contamination of Soil near Two Closed Zinc-Mining Sites)

  • 한심희;현정오;이경준;조덕현
    • 한국산림과학회지
    • /
    • 제87권3호
    • /
    • pp.466-474
    • /
    • 1998
  • 본 연구는 폐광지 주변에서의 토양내 중금속(Cd, Cu, Zn, Pb) 오염 정도와 토양내 중금속 농도와 수목내 중금속 축적 농도와의 관계를 규명하여, 오염지역의 정화에 수목을 이용할 수 있는지를 확인하는 것을 목적으로 수행하였다. 경기도 화성군에 위치한 삼보광산과 광명시에 있는 가학광산에서 1997년 4월부터 9월에 걸쳐 토양 시료와 주변의 난티잎개암나무, 리기다소나무, 현사시나무, 진달래, 아까시나무를 채취하여 중금속 농도를 측정하였다. 두 광산지역의 광구에서 500m 이내 주변 토양은 중금속에 의한 오염 정도가 28~143ppm으로써 심각하지 않았으나, Zn(143ppm), Pb(97ppm)과 같은 중금속 농도는 독성을 나타낼 수 있는 수준이었다. 토양내 중금속의 농도는 Zn>Pb>Cu>Cd의 순이었으며, 광구의 중심에서 1.5km 이상 멀어질수록 증금속 농도는 10ppm 이내로 감소하였다. 각 수종별 중금속의 농도는 Pb를 제외하고, 현사시나무에서 가장 높았으며, 특히 잎에 고농도로 축적되어 있었고, Zn의 경우 91ppm이 검출되었다. 난티잎개암나무의 뿌리에서는 Cu와 Pb의 높은 농도로 검출되었다. 토양의 중금속과 수목 조직내 중금속 농도는 매우 높은 정의 상관을 보여주었으며, 리기다소나무에서 가장 높은 상관계수를 나타냈다. 토양에 대한 수목 조직의 중금속 농도비(Concentration Factors : CF)는 Zn이 가장 높은 값을 보였고 Pb이 가장 낮은 값을 보여주었다. 현사시나무는 CF값이 가장 높아서 중금속을 가장 많이 축적하고 있었다. 특히 토양의 중금속 농도에 대한 식물체의 농도비가 가장 높은 현사시나무는 중금속의 흡수 능력이 뛰어나 중금속 오염지에서 정화식물로 이용할 수 있으며, 리기다소나무는 토양의 오염 정도를 가장 잘 반영하는 수종으로 판단된다.

  • PDF

슬러리 반응기를 이용한 페놀류 화합물의 분해거동 (Degradation of Phenolic Compounds in a Slurry Reactor)

  • 이자명;정연규;이태진
    • 대한환경공학회지
    • /
    • 제22권5호
    • /
    • pp.949-957
    • /
    • 2000
  • 본 연구는 페놀 분해균주인 P-99를 이용하여 슬러리상 반응기에서 페놀 또는 PNP (p-Nitrophenol)에 오염된 토양을 생물학적으로 복원시키는 방안을 모색하기 위해 수행되었다. 순수미생물에 의한 페놀의 분해는 혼합 미생물간의 경쟁적 상호작용을 배제시켜 활성슬러지의 지체시간보다 3배 정도 짧게 나타났다. 페놀 분해균주인 P-99는 300mg/L의 페놀을 26시간 안에 완전하게 분해하였으며, 페놀 1mg이 제거될 때 0.1457mg의 P-99 미생물이 생성되었다. PNP는 단일기질로 반응기내에 존재할 경우 페놀 분해균주인 P-99에 의한 분해는 일어나지 않았으나, 페놀에 유도된 경우 공대사 작용에 의해 효과적으로 분해할 수 있었으며, 이 때 PNP 분해에 있어서 성자기질인 페놀의 이용도는 0.027mg PNP/mg phenol이었다. 페놀과 PNP가 혼합기질로 반응기내에 존재할 경우 PNP의 농도가 증가할수록 미생물에 대한 저해작용이 증가되어 페놀의 분해속도가 감소하였으며, 슬러리상 반응기에서 미생물에 의한 페놀 및 PNP의 분해는 대상물질의 일부가 액상에서 토양의 표면으로 흡착되고 산소의 전달속도가 상승하여 액상에서 보다 2배 이상 가속화되었다.

  • PDF

우라늄 오염 동전기 침출액의 재이용을 위한 침전-여과 방법 (Precipitation-Filtering Method for Reuse of Uranium Electrokinetic Leachate)

  • 김계남;손동빈;박혜민;김기홍;이기원;문제권
    • 방사성폐기물학회지
    • /
    • 제9권2호
    • /
    • pp.63-71
    • /
    • 2011
  • 우라늄 오염토양을 동전기제염 시 많은 양의 동전기 침출액이 발생한다. 발생된 우라늄 침출액을 재이용하기 위한 처리기술이 개발되었다. 동전기제염 시 발생된 우라늄침출액 내의 우라늄농도는 180 ppm이었고, Mg(II), K(I), Fe(II), Al(III) 농도는 20 ppm~1,210 ppm이었다. 우라늄침출액의 최적 처리공정은 혼합, 응집, 침전, 농축, 그리고 여과로 구성된다. 침전액의 pH를 11로 맞추기 위해, calcium hydroxide는 3.0g/100ml 그리고 sodium hydroxide는 2.7g/100ml이 필요했다. 여러 침전실험 결과 NaOH+0.2g alum+0.15g magnetite가 여과를 위한 최적 침전혼합제로 선정되었다. NaOH+0.2g alum+0.15g magnetite 투입 시 침전입자의 평균크기는 $600\;{\mu}m$이었다. pH=9에서 침전 후 상등액에 총 금속농도가 가장 낮았기 때문에, 최적 침전을 위하여 먼저 0.2g/100ml alum와 0.15g/100ml magnetite 투입한 후 pH=9일 때까지 sodium hydroxide을 투입하여야 한다.