• Title/Summary/Keyword: Soil damage

Search Result 948, Processing Time 0.028 seconds

A Numerical Study on the Occurrence Scope of Underground Cavity and Relaxation Zone Considering Sewerage Damage Width and Soil Depth (하수관거 파손폭과 토피고를 고려한 지중 공동 및 이완영역 발생 규모에 관한 수치해석적 연구)

  • You, Seung-Kyong;Ahn, HeeChul;Kim, Young-Ho;Han, Jung-Geun;Hong, Gigwon;Park, Jeong-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.1
    • /
    • pp.43-53
    • /
    • 2019
  • This paper described a result of finite element analysis considering sewerage damage scale and soil depth, in order to analyze quantitatively for cavity and relaxation zone of underground due to sewerage damage. The mechanical model, which was verified by previous studies, was applied to the finite element analysis. In addition, the mechanical behavior of the soil around the sewerage damage due to the soil loss was simulated by using the forced displacement. Based on finite element analysis results, characteristics of the void ratio distribution, ground subsidence, and shear stress distribution according to sewerage damage scale and soil depth were analyzed. And then, The boundaries of the underground cavity and relaxation zone were determined by using the shear stress reduction characteristics of the ground. Also, an occurrence scope of the cavity and relaxation zone was quantitatively evaluated by the change of sewerage damage scale and soil depth.

Building Response to Excavation-Induced Ground Movements and Damage Estimation (굴착유발 지반변위에 의한 인접구조물의 거동 및 손상도 예측)

  • Son, Moo-Rak;Cording, E.J.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.249-256
    • /
    • 2006
  • New infrastructures and buildings are being constructed increasingly in congested urban areas, and excavation-induced ground movements often cause distortion and damage to adjacent buildings. Protection of adjacent structures occupies a major part of the cost, schedule and third-party impacts of urban development. To limit damage or mitigate their effects on nearby structures, it is highly important to understand the whole mechanism from excavation to building damage, and to estimate building damage reliably before excavation and provide appropriate measures. This paper investigates the effects of excavation-induced ground movements on nearby structures, considering soil-structure interactions for ground and structures, and a building damage criterion, which is based on the state of strain, is proposed. The criterion is compared with other existing damage estimation criteria and a procedure is finally provided for estimating building damage due to excavation-induced ground movements.

  • PDF

Physical Properties of Soil and Turfgrass Wear Characteristics of Soccer Fields - A Simulation of the Inchon 2002 World Cup Stadium - (축구경기장 토양의 물리적 특성과 잔디 마모특성 - 2002년 월드컵 인천경기장 모형돔을 대상으로 -)

  • 심상렬;정대영
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.1
    • /
    • pp.96-104
    • /
    • 2002
  • This study was conducted to investigate physical properties of soil and turfgrass wear characteristics within turfgrasses inside or outside the stadium A 1/1000 scale model Inchon world cup soccer d[me was constructed for this test. Turfgrasses planted inside and outside the model dome were; Kentucky bluegrass(KB), Kentucky bluegrass + perennial ryegrass mixture (KB+PR), Kentucky bluegrass + tall fescue + perennial ryegrass mixture (KB+TF+PR), Zoysia japonica 'Anyangjungzii'(ZA) and Zoysia japonica 'Zenith\`(ZZ). The rootzone was constructed by the multi-layer method (United States Golf Association method). Traffic on turfgrasses was treated with a 120kg roller. Surface soil hardness, soil penetration and water infiltration values on cool-season grasses(KB, KB+PR, KB+TF+PR) was found to be better for soccer play compared to zoysiagrasses(ZA, ZZ). No big differences in surface soil hardness, soil penetration and water infiltration values were found between inside and outside of the model dome. Wear damage on cool-season grasses caused by the traffic treatment was low compared to zoysiagrasses. However, there was no difference in wear damage by the traffic treatment within cool-season grasses while wear damage on ZA was higher than on ZZ within zoysiagrasses. It could be concluded that physical properties and wear characteristics on cool-season grasses were much better for soccer play than on zoysiagrasses.

A Case Study on the Damage of Reinforced Soil Walls due to Inflow Water (유입수로 인한 보강토옹벽의 피해사례 연구)

  • Kwang-Wu, Lee;In-hui, Cho;Gi-gwon, Hong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.123-134
    • /
    • 2022
  • The use of reinforced soil walls has grown significantly over the last few decades due to their ease construction and economical efficiency. Many damage cases of the reinforced soil walls have been reported as the use of reinforced soil walls increases. Inappropriate design and construction management mainly induce these problems. This paper describes case study on two damaged geogrid reinforced soil walls. The causes of the damage are investigated through the site investigations and proper countermeasures are proposed.

Emission of NO2 Gas Causing Damage to Plants in an Acid Soil under Conditions Favorable for Denitrification

  • Suh, Sun-Young;Byeon, Il-Su;Lee, Yong-Se;Chung, Jong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.4
    • /
    • pp.288-295
    • /
    • 2013
  • Nitrogen dioxide ($NO_2$) gas damage on vegetable crops commonly occurs in plastic film houses where relatively large amounts of $NO_3{^-}$ are applied in acid soils. In acid soils, $HNO_2$ can be formed from the $NO_2{^-}$ accumulated during denitrification, and $NO_2$ can be evolved from the chemical self-decomposition of $HNO_2$. In this study, $NO_2$ gas production and its detrimental effects on plants were investigated in soils of various conditions to elucidate the mechanisms involved in the gas production. A silty loam soil was amended with $NO_3{^-}$ (500 mg N $kg^{-1}$) and glucose, and pH and moisture of the soil were adjusted respectively to 5.0 and 34.6% water holding capacity (WHC) with 0.01 M phosphate buffer. The soil was placed in a 0.5-L glass jar with strawberry leaf or $NO_2$ gas absorption badge in air space of the jar, and the jar was incubated at $30^{\circ}C$. After 4-5 days of incubation, dark burning was observed along the outside edge of strawberry leaf and $NO_2$ production was confirmed in the air space of jar. However, when the soil was sterilized, $NO_2$ emission was minimal and any visible damage was not found in strawberry leaf. In the soil where water or $NO_3{^-}$ content was reduced to 17.3% WHC or 250 mg N $kg^{-1}$, $NO_2$ production was greatly reduced and toxicity symptom was not found in strawberry leaf. Also in the soil where glucose was not amended, $NO_2$ production was significantly reduced. In soil with pH of 6.5, $NO_2$ was evolved to the level causing damage to strawberry leaf when the soil conditions were favorable for denitrification. However, compared to the soil of pH 5.0, the $NO_2$ production and its damage to plants were much less serious in pH 6.5. Therefore, the production of $NO_2$ damaging plants might be occurred in acid soils when the conditions are favorable for denitrification.

Response of steel pipeline crossing strike-slip fault in clayey soils by nonlinear analysis method

  • Hadi Khanbabazadeh;Ahmet Can Mert
    • Geomechanics and Engineering
    • /
    • v.34 no.4
    • /
    • pp.409-424
    • /
    • 2023
  • Response of the pipeline crossing fault is considered as the large strain problem. Proper estimation of the pipeline response plays important role in mitigation studies. In this study, an advanced continuum modeling including material non-linearity in large strain deformations, hardening/softening soil behavior and soil-pipeline interaction is applied. Through the application of a fully nonlinear analysis based on an explicit finite difference method, the mechanics of the pipeline behavior and its interaction with soil under large strains is presented in more detail. To make the results useful in oil and gas engineering works, a continuous pipeline of two steel grades buried in two clayey soil types with four different crossing angles of 30°, 45°, 70° and 90° with respect to the pipeline axis have been considered. The results are presented as the fault movement corresponding to different damage limit states. It was seen that the maximum affected pipeline length is about 20 meters for the studied conditions. Also, the affected length around the fault cutting plane is asymmetric with about 35% and 65% at the fault moving and stationary block, respectively. Local buckling is the dominant damage state for greater crossing angle of 90° with the fault displacement varying from 0.4 m to 0.55 m. While the tensile strain limit is the main damage state at the crossing angles of 70° and 45°, the cross-sectional flattening limit becomes the main damage state at the smaller 30° crossing angles. Compared to the stiff clayey soil, the fault movement resulting 3% tensile strain limit reach up to 40% in soft clayey soil. Also, it was seen that the effect of the pipeline internal pressure reaches up to about 40% compared to non-pressurized condition for some cases.

histological Damage and Growth Inhibition of Pinus densiflora around the Metropolitan Area of Seoul (수도권 주변 소나무의 조직피해와 생장억제)

  • 이창석;길지현;유영한
    • The Korean Journal of Ecology
    • /
    • v.21 no.2
    • /
    • pp.125-131
    • /
    • 1998
  • Histological damage and growth inhibition of Pinus densiflora were analysed in different areas around the Metropolitan area of Seoul urban (heavily polluted), suburban (lightly polluted), and rural(unpolluted) areas. Soil properties of each area were also investigated. Contact angles of water droplet on needle leaves growing in polluted areas were lower than that in unpolluted area. Transpiration rates of needle leaves growing in polluted areas were more rapid than that in unpolluted area. These results represented that needle leaves growing in polluted areas were more susceptible to water deficit than that growing in unpolluted area was. Growths of annual ring of Pinus densiflora growing in polluted areas were lower than that in unpolluted area. On the other hand, soil pH in polluted areas was lower than that in unpolluted area. That is, the former was more acidified than that the latter was. Ca and Mg contents in polluted areas were lower than that in unpolluted area, while Al contents in polluted areas were higher than that in unpolluted area. These soil properties revealed that the effects of acid precipitates in urban and suburban areas were severer than that in rural area.

  • PDF

Expected damage for SDOF systems in soft soil sites: an energy-based approach

  • Quinde, Pablo;Reinoso, Eduardo;Teran-Gilmore, Amador;Ramos, Salvador
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.577-590
    • /
    • 2019
  • The seismic response of structures to strong ground motions is a complex problem that has been studied for decades. However, most of current seismic regulations do not assess the potential level of damage that a structure may undergo during a strong earthquake. This will happen in spite that the design objectives for any structural system are formulated in terms of acceptable levels of damage. In this article, we analyze the expected damage in single-degree-of-freedom systems subjected to long-duration ground motions generated in soft soil sites, such as those located in the lakebed of Mexico City. An energy-based methodology is formulated, under the consideration of input energy as the basis for the evaluation process, to estimate expected damage. The results of the proposed methodology are validated with damage curves established directly with nonlinear dynamic analyses.

Ginseng Damage by the African Mole Cricket, Gryllotalpa africana Palisot de Beauvois (땅강아지에 의한 인삼의 피해)

  • 김기황
    • Korean journal of applied entomology
    • /
    • v.31 no.4
    • /
    • pp.379-385
    • /
    • 1992
  • Ginseng damage by the African mole cricket (GTyllotalpa africana Palisot de Beauvois) was investigated in the field and laboratory from 1984 to 1991. Ginseng damage by G. africana occurred mainly in the 2nd year ginseng fields during May and June (spring period), and the damage was not nearly recognized in September and October (fall period) when densities of G. africana adults were higher in the field. In the laboratory and field cage, damage of 2nd year ginseng considerably decreased during fall period, which had no relation to ginseng diameter, and 3rd year ginseng was not damaged at all. Soil hardness seemed to influence on ginseng damage by G. africana adults.

  • PDF

The M6.4 Lefkada 2003, Greece, earthquake: dynamic response of a 3-storey R/C structure on soft soil

  • Giarlelis, Christos;Lekka, Despina;Mylonakis, George;Karabalis, Dimitris L.
    • Earthquakes and Structures
    • /
    • v.2 no.3
    • /
    • pp.257-277
    • /
    • 2011
  • An evaluation is presented of the response of a 3-storey R/C structure during the destructive Lefkada earthquake of 14/08/2003. Key aspects of the event include: (1) the unusually strong levels of ground motion (PGA = 0.48 g, $SA_{max}$ = 2.2 g) recorded approximately 10 km from fault, in downtown Lefkada; (2) the surprisingly low structural damage in the area; (3) the very soft soil conditions ($V_{s,max}$ = 150 m/s). Structural, geotechnical and seismological aspects of the earthquake are discussed. The study focuses on a 3-storey building, an elongated structure of rectangular plan supported on strip footings, that suffered severe column damage in the longitudinal direction, yet minor damage in the transverse one. Detailed spectral and time-history analyses highlight the interplay of soil, foundation and superstructure in modifying seismic demand in the two orthogonal directions of the building. It is shown that soil-structure interaction may affect inelastic seismic response and alter the dynamic behavior even for relatively flexible systems such as the structure at hand.