• Title/Summary/Keyword: Soil condition

Search Result 3,298, Processing Time 0.028 seconds

Characteristic of Vertical Stress in Sandy Soil according to Loading Types (재하방법에 따른 사질토 지반의 연직응력 특성)

  • Nam, Hyo-Seok;Lee, Sang-Ho;Kwon, Moo-Nam
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.83-90
    • /
    • 2009
  • This study was carried out to evaluate the vertical stress properties in sandy soil according to changes of loading type in soil bin compacted three layers. The following conclusions and comparisons have been made based on careful analysis from theoretical and experimental methods. : When sandy soil subjected to cycle-loading, compression of foundation and diffusion of vertical stress increment(${\Delta}{\sigma}_2$) were influenced by magnitude of loading plate. When sandy soil subjected to reloading after removing of pre-loading, the distribution of ${\Delta}{\sigma}_2$ depth at one time of loading plate width was different from its distribution at more deep point cause of load hysteresis, so in case of design of structure, the effect of ${\Delta}{\sigma}_2$ as depth must be considered. The increment of vertical stress will be different as loading condition and foundation depth, the loading condition must be considered in case of structure design.

Effects of Soil Environments by Location on the Cambium Electric Resistance of Pinus thunbergii in Urban Park and Open Space (도시공원녹지의 입지별 토양특성이 곰솔의 형성층 전기저항에 미치는 영향)

  • Park, Seung-Burm;Nam, Jung-Chil;Kim, Seok-Kyu
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.6
    • /
    • pp.13-22
    • /
    • 2006
  • The purpose of this study is to propose rational methods in order to maintain vegetation condition and soil environment based on the analysis of tree growth in relation to the soil environment, which is one of the most significant environmental factors on vegetation condition in urban parks and open spaces. The result of the study can be described as below;The soil on every study site had strong acidity. In particular, study sites around industrial district and central business district showed extreme soil acidity. Therefore, soil management system is needed in urban parks and green spaces around those areas. Among Cambium Electric Resistance classified by locations of urban parks and open spaces, one in the costal area was the lowest. The Cambium Electric Resistance in the industrial area was the highest. Therefore, soil condition and locational environment in the industrial area are highly related to the Cambium Electric Resistance. Among the factors, which affect Cambium Electric Resistance in different locations, inorganic content was found to be the main factor in all of the study sites. Inorganic content was an important factor to the Cambium Electric Resistance in study sites located in industrial and central business districts. In the study sites located in costal area, Soil acidity was found to be other important factors that affect Cambium Electric Resistance. To improve the soil acidity, soil buffering ability should be improved from activating microorganisms in the soil by using lime and organic material, Since it takes a long time to make a change in the soil structure, well planed maintenance system is required by mid-term or long-term plans.

In Situ Bio-barrier Formation using Bacteria/Fungi-Soil Mixture (Bacteria/Fungi 혼합토를 이용한 현장 Bio-barrier 형성)

  • 김건하;송영우;구동영
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.489-495
    • /
    • 2000
  • When microorganisms such as bacteria and fungi are injected into porous medium such as soils along with appropriate substrate and nutrients, biomass retained in the soil pore. Soil pore size and shape are varied from the initial condition as a result of biofilm formation, which make hydraulic conductivity reduced. In this research, hydraulic conductivity reduction was measured after microorganism are inoculated and cultured with synthetic substrates and nutrients. Biomass-soil mixture was evaluated its applicability to the field condition as an alternative liner material in landfill by measuring hydraulic conductivity change after repetitive freeze-thaw cycles.

  • PDF

Changes of Soil Nitrogen Supply and Production of Upland Forage Crops by Cattle Manure during Conversion from Paddy to Upland Condition in Paddy Field (논의 밭전환 연차간 우분시용에 의한 질소공급 및 밭사료 작물의 생산력 변화)

  • Seo Jong-Ho;Kim Sok-Oong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.6
    • /
    • pp.387-393
    • /
    • 2005
  • The effect of cattle manure with the rates of 2 and 4 ton $l0a^{-1}$ for winter rye and summer corn cultivation, respectively, on the dry matter (DM) yield and nitrogen (N) uptake were investigated during successive three­year conversion period from paddy to upland condition in paddy field. The changes in soil properties and soil N sup­plying capacity during repetitive manure application were a1so examined. Growth and DM yield of upland forage crops, especially. winter rye were hindered highly by poor soil condition in the first year after conversion from paddy to upland condition, so apparent recovery of cattle manure N by crops was very low in the first conversion year. But, DM yield and N uptake of upland forage crops were increased linearly by accumulative input of cattle manure along with mineral N enrichment in soil, which also increased apparent recovery of cattle manure-No It seemed that those increases were mainly due to the improvement of soil properties such as soil mineral N, soil organic matter (soil carbon), potentially mineralizable N and bulk density by accumulative input of cattle manure rather than the increase of soil N supply according to accumulative conversion period from paddy to upland condition. It was derived that conversion period from paddy to upland condition over 2 years is needed to obtain proper DM yield in paddy field and accumulative inputs of cattle manure during the conversion period is more influential to the continuous increment of DM yield and N uptake of upland crop as well as of potential N supplying capacity of soil.

A Study on the Uplift Capacity of Cylindrical Concrete Foundations for Pipe-Framed Greenhouse (파이프 골조온실의 원주형 콘크리트 기초의 인발저항력에 관한 연구)

  • ;;;;Shino Kazuo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.4
    • /
    • pp.109-119
    • /
    • 1998
  • Recently pipe-framed greenhouses are widely constructed on domestic farm area. These greenhouses are extremely light-weighted structures and so are easily damaged under strong wind due to the lack of uplift resistance of foundation piles. This experiment was carried out by laboratory soil tank to investigate the displacement be haviors of cylindrical pile foundations according to the uplift loads. Tested soils were sampled from two different greenhouse areas. The treatment for each soil type are consisted of 3 different soil moisture conditions, 2 different soil depths, and 3 different soil compaction ratios. Each test was designed to be repeated 2 times and additional tests were carried out when needed. The results are summarized as follows : 1. When the soil moisture content are low and/or pile foundations are buried relatively shallow, ultimate uplift capacity of foundation soil was generated just after begining of uplift displacement. But under the high moisture conditions and/or deeply buried depth, ultimate up-lift capacity of foundation soil was generated before the begining of uplift displacement. 2. For the case of soil S$_1$, the ultimate uplift capacity of piles depending on moisture contents was found to be highest in optimum moisture condition and in the order of air dryed and saturated moisture contents. But for the case of soil S$_2$, the ultimate uplift capacity was found to be highest in optimum moisture condition and in the order of saturated and air dryed moisture contents. 3. Ultimate uplift capacities are varied depending on the pile foundation soil moisture conditions. Under the conditions of optimum soil moisture contents with 60cm soil depth, the ultimate uplift capacity of pile foundation in compaction ratio of 80%, 85%, and 90% for soil 51 are 76kg, 115kg, and 155kg, respectively, and for soil S$_2$are 36kg, 60kg, and 92kg, respectively. But considering that typical greenhouse uplift failure be occurred under saturnted soil moisture content which prevails during high wind storm accompanying heavy rain, pile foundation is required to be designed under the soil condition of saturated moisture content. 4. Approximated safe wind velosities estimated for soil sample S$_1$and S$_2$are 32.92m/s and 26.58m/s respectively under the optimum soil condition of 90% compaction ratio and optimum moisture content. But considering the uplift failure pattern under saturated moisture contents which are typical situations of high wind accompanying heavy rain, the safe wind velosities for soil sample S$_1$and S$_2$are not any higher than 20.33m/s and 22.69m/s respectively.

  • PDF

Change of Slope Stability due to Slope Inclination and Surface Conditions (사면경사와 표면 조건에 따른 사면안정성 해석)

  • Hwang, Young-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.2
    • /
    • pp.5-11
    • /
    • 2015
  • Slope stability is affected by duration of precipitation, probable rainfall intensity, unsaturated soil property, and soil strength. The recent analyses of slope stability tend to include unsaturated analysis based on infiltration properties of soil, while researches of unsaturated soil slope tend to include the analysis of deformation and stress distribution of soil over time. However, infiltration property of unsaturated soil slope depends not only on intensity or duration of precipitation, but also on relief and surface condition, which is not considered in status quo. This research uses hydrologic model parameters of soil in order to consider effects of inclination on filtration, and carries out analysis of unsaturated soil slope to confirm the effects according to slope inclination and surface condition. In conclusion, using slope stability analysis, the need to consider infiltration rate according to inclination and surface condition was confirmed even under the same precipitation conditions.

Composition and functional diversity of bacterial communities during swine carcass decomposition

  • Michelle Miguel;Seon-Ho Kim;Sang-Suk Lee;Yong-Il Cho
    • Animal Bioscience
    • /
    • v.36 no.9
    • /
    • pp.1453-1464
    • /
    • 2023
  • Objective: This study investigated the changes in bacterial communities within decomposing swine microcosms, comparing soil with or without intact microbial communities, and under aerobic and anaerobic conditions. Methods: The experimental microcosms consisted of four conditions: UA, unsterilized soil-aerobic condition; SA, sterilized soil-aerobic condition; UAn, unsterilized soil-anaerobic condition; and San, sterilized soil-anaerobic condition. The microcosms were prepared by mixing 112.5 g of soil and 37.5 g of ground carcass, which were then placed in sterile containers. The carcass-soil mixture was sampled at day 0, 5, 10, 30, and 60 of decomposition, and the bacterial communities that formed during carcass decomposition were assessed using Illumina MiSeq sequencing of the 16S rRNA gene. Results: A total of 1,687 amplicon sequence variants representing 22 phyla and 805 genera were identified in the microcosms. The Chao1 and Shannon diversity indices varied in between microcosms at each period (p<0.05). Metagenomic analysis showed variation in the taxa composition across the burial microcosms during decomposition, with Firmicutes being the dominant phylum, followed by Proteobacteria. At the genus level, Bacillus and Clostridium were the main genera within Firmicutes. Functional prediction revealed that the most abundant Kyoto encyclopedia of genes and genomes metabolic functions were carbohydrate and amino acid metabolisms. Conclusion: This study demonstrated a higher bacteria diversity in UA and UAn microcosms than in SA and SAn microcosms. In addition, the taxonomic composition of the microbial community also exhibited changes, highlighting the impact of soil sterilization and oxygen on carcass decomposition. Furthermore, this study provided insights into the microbial communities associated with decomposing swine carcasses in microcosm.

The Fate of As and Heavy Metals in the Flooded Paddy Soil Stabilized by Limestone and Steelmaking Slag (석회석과 제강슬래그를 이용하여 안정화한 담수된 논토양의 비소 및 중금속의 거동변화)

  • Koh, Il-Ha;Kim, Eui-Young;Ji, Won Hyun;Yoon, Dae-Geun;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.1
    • /
    • pp.7-18
    • /
    • 2015
  • The characteristics of As and heavy metals depend on the oxidation/reduction condition of the soil environment. The most heavy metals are immobilized by the reduction condition whereas As, Fe and Mn become more soluble. Therefore this study estimated the stabilization efficiency of the agricultural paddy soil in the vicinity of the abandoned mine using a flooded column test including analysis of the soil solution, contaminants fractionation and rice grain. Limestone and steelmaking slag were used as amendments for stabilization of the contaminated soil. In an analysis of the soil solution, the mobile characteristics of Fe and Mn, which were used as electron acceptors of the microorganisms, were controlled by increasing the pH by adding alkali amendments. This means that the contaminants combined with Fe and Mn can be stable under flooded reduction condition. However, the concentrations of cationic heavy metals (Cd, Pb, and Zn) were also decreased without amendments because the carbonates produced from microbial respiration increased the pH of the soil solution. In the amended soil, the specific sorbed fraction of As and carbonates fraction of heavy metals were increased when compared to the control soil at the end of the column test. Especially in heavy metals, the increase of carbonates fraction seems to be influenced by alkali amendments rather than microbial respiration. Because of the stabilization effect in the flooded paddy soil, the contents of As and Zn in rice grain from amended soil were lower than that of the control soil. But additional research is needed because of the relatively higher Pb content identified in the rice grain from the amended.

Behavior of a Reinforced Retaining Wall During Construction (보강토의 시공중 거동 평가)

  • 노한성;최영철;백종은;김영남
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.95-100
    • /
    • 2000
  • When compared with conventional retaining wall system, there are many advantages to reinforced soil such as cost effectiveness, flexibility and so on. The use of reinforced soil have been increased in the last 17 years in Korea. In this study, a full-scale reinforced soil with rigid facing were constructed to investigate the behavior of reinforcing system. The results of soil pressure and strain of reinforcement during construction are described. The influence of compaction on soil pressure and strain of reinforcement is addressed. The results show that lateral earth pressures on the wall are active state during backfill. It is obtained that the lateral soil pressure depends on the installation condition of pressure cell and construction condition. It is also observed that maximum tensile strains of reinforcement are located on 50cm to 150cm from the wall. Long-term measurement will be followed to verify the design assumptions with respect to the distribution of lateral stress in the reinforcement

  • PDF

Earth Pressure of a Reinforced Retaining Wall During Construction (보강토의 시공중 토압변화)

  • 노한성;최영철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.06a
    • /
    • pp.13-19
    • /
    • 2001
  • The use of reinforced soil have been increased due to it's cost effectiveness, flexibility and so on. In this study, a full-scale reinforced soil with rigid facing were constructed to investigate the soil pressure variation of reinforcing system. The results of soil pressure during backfill construction are described. The influence of facing stiffness on soil pressure is addressed. The results show that lateral earth pressures on the wall are active state during backfill. It is obtained that the lateral soil pressure highly depends on the installation condition of pressure cell and construction condition. Long-term measurement will be followed to verify the design assumptions with respect to the distribution of lateral stress on the facing.

  • PDF