• Title/Summary/Keyword: Soil condition

Search Result 3,298, Processing Time 0.029 seconds

New coefficients to find natural period of elevated tanks considering fluid-structure-soil interaction effects

  • Maedeh, Pouyan Abbasi;Ghanbari, Ali;Wu, Wei
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.949-963
    • /
    • 2017
  • The main purpose of the current study is to develop the new coefficients for consideration of soil-structure interaction effects to find the elevated tank natural period. Most of the recommended relations to find the natural period just assumed the fixed base condition of elevated tank systems and the soil effects on the natural period are neglected. Two different analytical systems considering soil-structure- fluid interaction effects are recommended in the current study. Achieved results of natural impulsive and convective period, concluded from mentioned models are compared with the results of a numerical model. Two different sets of new coefficients for impulsive and convective periods are developed. The values of the developed coefficients directly depend to soil stiffness values. Additional results show that the soil stiffness not only has significant effects on natural period but also it is effective on liquid sloshing wave height. Both frequency content and soil stiffness have significant effects on the values of liquid wave height.

The Characteristics of Soil Remediation by Soil Flushing System Using PVDs (연직배수재를 이용한 토양세정시스템의 오염토양정화 특성)

  • Park, Jeong-Jun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.5
    • /
    • pp.76-86
    • /
    • 2007
  • For the purpose of ground improvement by means of soil flushing systems. Incorporated technique with prefabricated vertical drains have been used for dewatering from fine-grained soils. The laboratory model tests were performed by using the flushing tracer solutions for silty soils and recorded the tracer concentration changes with the elapsed time and flow rates. A mathematical model for prediction of contaminant transport using the PVD technology has been developed. The clean-up times for the predictions on both soil condition indicate more of a sensitivity to the dispersivity parameter than to the extracted flow rate and vertical velocity parameters. Based on the results of the analyses, numerical analysis indicate that the most important factor to the in-situ soil remediation in prefabricated vertical drain system is the effective diameter of contaminated soil.

Simplified model for analysis of soil-foundation system under cyclic pushover loading

  • Kada, Ouassila;Benamar, Ahmed;Tahakourt, Abdelkader
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.267-275
    • /
    • 2018
  • A numerical study of soil-foundation system under monotonic and cyclic pushover loading is conducted, taking into account both material and geometric nonlinearities. A complete and refined 3D finite element (FE) model, using contact condition and allowing separation between soil and foundation, is implemented and used in order to evaluate the nonlinear relationship between applied vertical forces and induced settlements. Based on the obtained curve, a simplified model is proposed, in which the soil inelasticity is satisfactorily represented by two vertical springs with trilinear behavior law, and the foundation uplifting is insured by gap elements. Results from modeling soil-foundation system supporting a bridge pier have shown that the simplified model is able to capture irreversible settlements induced by cyclic rocking, due to soil inelasticity and vertical loading, as well as large rotations due to foundation uplifting.

Reduction of Soil Loss from Sloped Agricultural Field by using Hydrated Lime (소석회를 이용한 급경사 농경지 토양유실 저감)

  • Koh, Il-Ha;Yu, Chan;Park, Mi Jeong;Ji, Won Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.2
    • /
    • pp.1-7
    • /
    • 2019
  • The feasibility of using hydrated lime ($Ca(OH)_2$) was assessed in reducing soil loss in sloped land under field condition. During 6-month monitoring from May to October, amendment of hydrated lime (3%, w/w) to a test plot decreased soil loss by 76% as compared to the unamended plot. However, the growth of natural vegetation was hampered by hydrated lime addition due to pH increase. Hydrated lime can be used as an effective agent to prevent soil loss in sloped land, but additional treatments are needed to preserve vegetation growth, especially in crop fields.

A Relative Study on the Displacement of Earth Retaining Wall by 2 and 3 Dimentional Analysis (2차원 및 3차원 해석에 의한 토류벽의 변위에 관한 비교 연구)

  • Park, Chun-Sik;Park, Hae-Chan;Kim, Jong-Hwan;Park, Young-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.801-810
    • /
    • 2010
  • Until now, design of Earth Retaining is practiced by 2nd dimensional analysis for convenience of analysis and time saving. However, the construction field is 3rd dimension, in this study, practised the 3rd dimensional analysis which can reflect the field condition more exactly the scope of earth retaining wall, and researched about the effective and economical way of design, compared and reviewed with the results, by practising both the 2nd and 3rd dimensional analysis. existing 2nd dimension. the depth of excavation, depth of embedded and soil condition. As result, under the whole conditions, more displacement came to appear to the value as result of 3rd dimensional analysis more than the result of 2nd dimensional analysis. Accordingly, the displacement by the 2nd dimension analysis is underestimated. Moreover, results of 2nd and 3rd dimensional analysis, there is no difference at displacement, when the depth of embedded is 0.5H, 1.0H and 1.5H, but Displacement of 1.5H is smaller than 0.5H, 1.0H. That is, the bigger the depth of embedded becomes, the displacement of Earth Retaining Wall appeared smaller. The displacement of earth retaining wall according to depth of excavation appeared bigger, when the depth of excavation is increased. In the meantime, when the soil condition is different, in the 2nd dimensional analysis, the displacement appeared biggest, in case of the clay layer, but in the 3rd dimensional analysis, in the beginning of excavating, the displacement of earth retaining wall appeared bigger in case of clay layer, but as excavating is in progress, the displacement of both compound soil layer and sand layer appeared big.

  • PDF

Flooding Tolerance of Cool-Season Turfgrass for the Revegetation of Waterside Slopes (수변 비탈면 녹화를 위한 한지형잔디의 내침수성 연구)

  • Shim, Sang-Ryul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.2
    • /
    • pp.45-52
    • /
    • 2015
  • Cool-season turfgrass is a rapidly increasing of usage for the revegetation of waterside slopes in dams, lakes and rivers. The purpose of this research is to identify the flooding tolerance of cool-season turfgrass with respect to the flooding periods of 0(control), 2, 4 and 6 days, respectively. The surface coverage ratio, turfgrass injury and soil moisture content were measured to assess the flooding tolerance of cool-season turfgrass. The increase in the flooding periods with 4 and 6 days resulted in the lower surface coverage ratio for cool-season turfgrass while no significant difference was found in the 2 days flooding when compared to 0 day (the control plot) flooding plot. In case of the turfgrass injury and the soil moisture content, however, the higher values were found with the increase of flooding periods in 2, 4 to 6 days. We observed that the higher the turfgrass injury and soil moisture content increased, the lower the surface covrage ratio decreased. In these regards, we also observed that the tolerance of cool season turfgrass were high in the 2 days flooding condition, medium in the 4 days flooding condition and low in the 6 days flooding condition. The flooding tolerance of cool-season turfgrass was gradually weakened in over 2 days flooding periods due to $O_2$ deficiency in the anaerobic soil condition. Therefore, we could suggest cool-season turfgrass within 2 days flooding periods for the revegetation of waterside slopes in dams, lakes and rivers.

Speciation of Cd, Cu and Zn in Sewage Sludge-Treated Soils Incubated under Aerobic and Anaerobic Conditions

  • Lee, Sang-Mo;Cho, Chae-Moo;Yoo, Sun-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.2
    • /
    • pp.85-91
    • /
    • 1999
  • The incubation study was conducted under aerobic and anaerobic conditions to study the release of the kinetically labile forms (i. e. chelating ion or anion forms) of Cd, Cu and Zn in sludge-untreated soil ("Control"), sludge 50 and $100dry\;Mg\;ha^{-1}$ treated soils ("Soil-Sludge mixtures"), and sewage sludge ("Sludge"). The chelating ion and anion exchange membranes were embedded into the samples and incubated for 16 weeks under aerobic and anaerobic condition. The total amounts of chelating ion or anionic forms of Cd were too little to be measured during both aerobic and anaerobic incubation. On the other hand, the total amounts of chelating ion or anionic forms of Cu and Zn slightly increased throughout the incubation period under both incubation conditions. For "Control" and "Soil-Sludge mixtures" treatments, the total amounts of Cu and Zn in chelating ion and anion exchange membrane were little difference between aerobic and anaerobic condition, and the total amounts of chelating ion form of Cu and Zn were not different from the those of anionic form of Cu and Zn. However, for "Sludge" treatment, the total amounts of Cu and Zn in anion and chelating ion exchange membrane were greater under aerobic condition than under anaerobic condition, and the total amounts of chelating ion form of Cu and Zn were greater than those of anion form of Cu and Zn under both incubation conditions.

  • PDF

Nutrient Leaching and Crop Uptake in Weighing Lysimeter Planted with Soybean as Affected by Water Management (중량식 라이시미터에서 콩 재배시 물관리 방법에 의한 양분의 용탈과 작물 흡수)

  • Lee, Ye-Jin;Han, Kyung-Hwa;Lee, Seul-Bi;Sung, Jwa-Kyung;Song, Yo-Sung;Lee, Deog-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.3
    • /
    • pp.147-153
    • /
    • 2017
  • BACKGROUND: Soil water content strongly depends on weather condition and irrigation, and it could influence on crop nutrient use efficiency. This study was performed to assess nutrient uptake of soybean by soil water condition. METHODS AND RESULTS: In this study, nutrient leaching and crop uptake as affacted by water management practice was investigated using weighing lysimeter which is located in National institute of agricultural science, Wanju, Jeonbuk province from June 2015 to October 2016. Water supply for soybean (cv. Daewon) was managed with irrigation and rainfall. Nitrate leaching was greatest in the rainfall treatment at early July 2016. Yield of soybean in the rainfall treatment was only 25% compared to the irrigation due to the drought at flowering and podding period. The uptake of nitrogen was considerably reduced by drought whereas the uptake of phosphorus and potassium was less affected by drought. CONCLUSION: It was proven that nitrogen loss and uptake were dependent on soil water condition. Therefore, irrigation water management to maintain available soil moisture capacity is critical to nitrogen uptake and yield of soybean.

Behavior of benzoylurea insecticide teflubenzuron and flucycloxuron in soil environment (Benzoylurea계 살충제 teflubenzuron과 flucycloxuron의 토양환경중 동태)

  • Kim, Tae-Hwa;Kim, Jang-Eok
    • Applied Biological Chemistry
    • /
    • v.36 no.6
    • /
    • pp.510-516
    • /
    • 1993
  • The degradation and leaching pattern of benzoylurea insecticide teflubenzuron and flucycloxuron in soil environment and their effect on urease activity were investigated. The half-life of teflubenzuron was 39.1 days and 20.9 days in Chilgok and Ansim soil of nonsterilized condition, respectively, and that of flucycloxuron was 102.3 days and 50.1 days. Teflubenzuron and flucycloxuron were degraded more rapidly in Ansim soil with rich organic matter than Chilgok soil, and were degraded very slowly under sterilized condition. Their degradation seemed to be mainly mediated by microorganisms in soil. Teflubenzuron was degraded 63.2 days and 29.2 days faster than flucycloxuron under nonsterilized condition of Chilgok and Ansim soil. The inhibition of urease by the pesticides in two kinds of soil was strongly affected $(37.6{\sim}42.4%)$ in the early stage of their treatment but hardly affected or increased a little after 120 days. The teflubenzuron and flucycloxuron remained in the upper 5 cm of the soil column after elution with 1,000 ml of water, and they were not detected in leachate.

  • PDF

Soil Characteristics according to the Geological Condition of Natural Slopes in Busan Area (부산지역 자연사면의 지질조건에 따른 토질특성)

  • Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.471-481
    • /
    • 2007
  • The Landslide in natural slope is occurred mostly by a heavy rain of the summer. This landslide is influenced in soil property of the surface than the rock mass. Soils in natural slope are created by weathering phenomena of the bedrock. These soils differed to the geological conditions such as sedimentary rock, metamorphic rock and volcanic rock. Therefore, estimation of landslide in natural slope is the most important analysis of the bedrock distributions and soil characteristics. This study analyzed the soil property to the natural slopes of Busan area where is distributed to volcanic rock, granite and sedimentary rock. Soil sample conducted various soil tests for estimate the soil physical property and soil engineering characteristics, and analysis of the correlation of geological conditions. In the experiment result, soils were mainly classified by a clayey sand. It is also established that $1.07{\sim}1.99kg/cm^3$ for wet density, $28.2{\sim}39.6^{\circ}$ for angle of shearing resistance, and $8.10{\times}10^{-5}{\sim}8.38{\times}10^{-2}cm/sec$ for coefficient of permeability. From the physical parameter, the soils are estimated to the permeable ground with good shear strength, and soil properties are showed a differential tendency for each geological condition.