• Title/Summary/Keyword: Soil cation contents

Search Result 139, Processing Time 0.03 seconds

Physicochemical Properties and Plant Coverage of Wood-based Growing Media on Slopes

  • Moon, Hong-Duk;Ha, Si Young;Jung, Ji Young;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.645-655
    • /
    • 2018
  • The use of wood waste as substrate for plant growth exemplifies a strategy for turning waste into resources. The overall objective of this research was to evaluate the effects of wood-based growing media on plant cover in a slope area. Moreover, we tried to find out what physicochemical properties affect plant cover on a slope. For treatments, we tested natural soil, soil mixed with wood-based growing medium (1:1, w/w), and wood-based growing medium by itself. Physical and chemical characteristics were evaluated after four months from the date of treatment application to the experimental slope site. Soil coverage with seedlings of Lespedeza cyrtobotrya was measured for plant growth evaluation. Physicochemical properties were altered by mixing the natural soil with wood-based growing medium. Particularly, soil moisture and organic matter contents were significantly changed in soils treated with wood-based growing medium compared to soil alone. We confirmed that plant coverage rate was high when wood-based growing medium was mixed with the natural soil. There was a significant linear relationship between moisture content and CEC (Cation Exchange Capacity) of all growth media tested and plant coverage. This result was expected, as moisture content tends to increase with organic matter content, such as in wood-based growing medium. In conclusion, the high moisture content of the wood-based growing medium was considered effective for plant growth in the experimental slope site, and this wood-based growing medium provides a means to improve the harmony between the slope and the surrounding environment.

Model for Ionic Species Estimation in Soil Solutio (토양용액의 이온조성 추정모델)

  • Kim, Yoo-Hak;Yoon, Jung-Hui;Jung, Beung-Gan;Kim, Min-Kyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.3
    • /
    • pp.213-236
    • /
    • 2001
  • The ionic composition of soil solution is related to a nutrient uptake by plant. Many models for estimating ionic composition of solution have been developed, and most of them have been used for calculating a content of mineral and ionic species in a geochemical point of view. An approximation model considering both cation and anion in soil solution was developed. Variables such as pH, Eh, EC, cations(K, Ca, Mg. Na, Fe, Mn, Al, $NH_4{^+}$), anions(Si, S, P, CY, $NO_3{^-}$, $HCO_3{^-}$ and chemical equilibria of ionic species in soil solution were input into Excel sheet. The activities of soluble ion, ionpairs and complexes of input element were estimated by Newton-Raphson method using conditional equilibrium constant calculated by Davies equation and special models. Equilibrium contents of insoluble minerals and complexes were also calculated.

  • PDF

Changes of Soil Physico-chemical Properties by Repeated Application of Chicken and Pig Manure Compost (계분 및 돈분퇴비의 연용에 의한 토양의 물리화학성 변화)

  • Chang, Ki-woon;Cho, Sung-hyun;Kwak, Jung-ha
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.7 no.1
    • /
    • pp.23-30
    • /
    • 1999
  • The changes of soil physico-chemical properties were investigated in the sandy loam soil amended with various application rates of chicken and pig manure composts. After repeated application of the composts for 3 years, total nitrogen content in soil treated with applied 120Mg/ha of chicken and pig manure composts was 2.1 g/kg equally. Organic matter content was 38.8 and 39.1 g/kg, available phosphate content was 602 and 585 mg/kg, and cation exchange capacity(CEC) was 10.1 and 12.4 cmol/kg in chicken and pig manure compost 120 Mg/ha treatment, respectively. Exchangeable K, Ca, Na, Mg contents, and electrical conductivity(EC) increased with the amount of applied compost. Also, with increased amount of applied compost, porosity of soil increased, but hardness, bulk density and Y value decreased.

  • PDF

Forest Vegetation and Soil Environment on Mt. Mohu (모후산 삼림식생과 토양환경)

  • Lee, Ho-Joon;Kang, Jae-gu;Chun, Young-Moon;Kim, Jong-Hong;Bae, Byung-Ho
    • The Korean Journal of Ecology
    • /
    • v.18 no.3
    • /
    • pp.367-383
    • /
    • 1995
  • The relationship between floristic composition and soil environmental factors was investigated in the forest vegetation of Mt. Mohu.The forest vegetation unit of the Mt. Mohu could be divided into three communities, Quercus mongolica community, Pinus densiflora community and Quercus variabilis community. There were two subcommunities in Quercus mongolica community, which were Rhododendron schlippcubachii subcommunity and Stephanandra incisa subcommunity. The Quercus mongolica community was distributed at the altitude of 600~900 m, Pinus densiflora and Quercus variabilis communities were distributed on south-west slope at the altitudes of 430~520 m and 400~500 m, respectively.The DBH class of dominant species in each community showed that Quercus mongolica had 9 individuals/a at 11~15 cm class, Quercus variabilis 5.6 individuals/a at 11~15 cm class, and Pinus densiflora 8 individuals/a at 16~20 cm class. Quercus mongolica. Quercus variabilis and Pinus densiflora communities showed a bell-shape distribution.The contents of organic matter and soil water, and cation exchange capacity of the soil increased and the pH decreased in proportion to increased altitude. The soil environmental conditions of Quercus mongolica community were more favorable than those of Pinus densiflora and Quercus variabilis communities.The supposed successional sere of the forest vegetation of Mt. Mohu was as follows: Pinus densiflora community.Quercus variabilis community.Quercus mongolica community

  • PDF

Physical and Chemical Properties of Soils in Quercus acutissima, Q. mongolica, Q. serrata, and Q. variabilis stands (상수리나무, 신갈나무, 졸참나무, 굴참나무 임분의 토양 물리·화학적 특성)

  • Sang Tae, Lee;Sang Hoon, Chung;Choonsig, Kim
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.4
    • /
    • pp.530-537
    • /
    • 2022
  • This study was conducted to compare the physical and chemical properties of soils in Quercus acutissima, Q. mongolica, Q. serrata, and Q. variabilis stands. A total of 423 plots (Q. acutissima 72 plots, Q. mongolica 150 plots, Q. serrata 97 plots, and Q. variabilis: 104 plots) were examined to determine the soil properties of A and B horizons throughout the country. The physical and chemical properties of soils were significantly different among the four different Quercus spp. stands. The sand content in both horizons was significantly higher in Q. acutissima stands than in the other three oak stands, whereas the clay content was lowest among the four stands. The soils in Q. mongolica and Q. serrata stands were more acidified than those in Q. acutissima and Q. variabilis stands. The concentrations of organic carbon and total nitrogen in both soil depths were significantly higher in Q. mongolica stands than in Q. serrata, Q. variabilis, and Q. acutissima stands. The content of available phosphorus was significantly higher in Q. mongolica and Q. serrata stands than in Q. acutissima and Q. variabilis stands; whereas the contents of exchangeable potassium, calcium, and magnesium were lower in Q. mongolica and Q. serrata stands than in Q. acutissima and Q. variabilis stands. The cation exchange capacity was highest in Q. mongolica stands, followed by that in Q. serrata, Q. variabilis, and Q. acutissima stands. These data indicate the need to design a nutrient management plan to enhance the low soil pH and exchangeable cation in Q. mongolica and Q. serrata stands.

Changes in Chemical Properties of Paddy Field Soils as Influenced by Regional Topography in Jeonbuk Province (지형특성에 따른 전북지역 논토양 화학성 변화)

  • Ahn, Byung-Koo;Lee, Jin-Ho;Kim, Kab-Cheol;Kim, Hyung-Gook;Jeong, Seong-Soo;Jeon, Hye-Won;Zhang, Yong-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.393-398
    • /
    • 2012
  • We investigated the changes in chemical properties of paddy field soils at 300 different sampling sites containing 4 topography in Jeonbuk province, Korea. The soil samples were collected 43.0% from local valley and fans, 39.3% from fluvio-marine deposits, 15.0% from alluvial plains, and 2.7% from diluvium sites. The optimal values of soil properties in the total soil samples were as follows: 65.3% of total samples in soil pH value, 48.3% of total samples in cation exchange capacity (CEC) value, and 22.3% of total samples in available phosphorus content, whereas the deficient values of soil properties were 63.3% of total samples in soil organic matter (SOM) content, 75.7% of total samples in available silicate content, and 61.3%, 51.0%, and 59.3% of total samples in exchangeable $K^+$, $Ca^{2+}$, and $Mg^{2+}$ concentrations, respectively. There were different soil types in the paddy fields: that is, 34.4% immature paddy and 33.6% sandy paddy in the local valley and fans, 57.8% sandy paddy in the alluvial plains, 47.4% normal paddy in the fluvio-marine deposits, and 75.7% immature paddy in the diluvium. Soil textures were also different: 53.5% loam in the local valley and fans, 37.8% sandy loam in the alluvial plains, and 55.1% silty loam in the fluvio-marine deposits. Soil pH and SOM contents were not different among the different topographical sampling sites. However, the mean value of available phosphorus content, 224 mg $kg^{-1}$, was exceeded optimal values in the diluvium. The contents of exchangeable cations were optimal in all the sites, except exchangeable $Ca^{2+}$ contents in the local valley and fans. The contents of available silicate ranged between 112 and 127 mg $kg^{-1}$ in all the sites, which were lower than optimal value. In addition, soil pH values were proportionally correlated to the order of available silicate, exchangeable $Ca^{2+}$, $Mg^{2+}$, $Na^+$, CEC, and exchangeable $K^+$. The contents of SOM were proportionally correlated to the order of CEC, available $P_2O_5$, exchangeable $Ca^{2+}$, and available silicate. The contents of heavy metals, Cd, Cr, Cu, Ni, Pb, and Zn, were only 10% of the threshold levels of the metals, and As content was about 20 to 30% of the threshold level.

A Study on the Structure Characteristics of Planting Ground in Incheon International Airport, Korea (인천국제공항 식재기반 구조 및 토양특성 연구)

  • Lee, Seung-Won;Han, Bong-Ho;Lee, Kyong-Jae;Kwak, Jeong-In;Yeum, Jung-Hun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.3
    • /
    • pp.77-91
    • /
    • 2015
  • This study aims to suggest adequate soil management through the analysis of physicochemical properties of soil in the planting grounds of Incheon International Airport, which was constructed on a massive land reclamation site. Study areas were 5 sites at the international business complex, the passenger terminal, the airport support complex, the free trade zone, and the access road. Soil profile analysis showed that 9 plots out of the 27 plots were hardpan and heterospere within 80cm from the soil surface. The earth laid on the ground was categorized as gravel based soil(4 plots), dredged soil from the sea bottom and mixed reclamation materials(2 plots), clay with poor permeability(3 plots) and waste construction material(1 plot). Average soil hardness was $11.5kg/cm^2$ and soil textures were sandy soil, sandy loam and loamy sand. Average soil pH was 6.7 and average organic matter content was 0.7%. Electrical conductivity was 0.0dS/m and exchangeable cation concentrations were $Ca^{2+}$ 3.4cmol/kg, $Mg^{2+}$ 1.5cmol/kg, $K^+$ 0.3cmol/kg and $Na^+$ 1.0cmol/kg. Average cation exchange capacity was 11.0cmol/kg. Although average figures in Solum mostly meet the landscape design criteria, properties of each soil layer showed various values sometimes over the limit. Base saturations were $Ca^{2+}$ 29.9%, $Mg^{2+}$ 13.3% and $K^+$ 3.7% for lower soil, $Ca^{2+}$ 33.3%, $Mg^{2+}$ 17.0% and $K^+$ 2.7% for mid-soil and $Ca^{2+}$ 32.6%, $Mg^{2+}$ 12.2% and $K^+$ 1.9% for upper soil. Exchangeable sodium percentages were 16.4% for lower soil, 7.5% for mid-soil and 4.7% upper soil. Sodium adsorption rates were 0.8 for lower soil, 0.3 for mid-soil and 0.2 for upper soil. Factors affecting to the vegetation growth were heterogeneity and poorness of solum, disturbance of dredged soils, high soil hardness including hardpan in the subsurface soil layer and shallow effective soil depth, high soil acidity, imbalance of base contents, low organic matter content and low available phosphate levels in the soil.

Characteristics of the soil loss and soil salinity of upland soil in saemangeum reclaimed land in western South Korea

  • Kim, Young Joo;Lee, Su Hwan;Ryu, Jin Hee;Oh, Yang Yeol;Lee, Jeong Tae
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.316-316
    • /
    • 2017
  • The objective of this study is to estimate quantitatively soil salinity and soil loss at upland soils in agriculture land region in Saemangeum reclaimed land on the south Korea coasts. Soil loss and soil salinity are the most critical problem at reclaimed tidal saline soil in Korea. The several thematic maps of research area such as land cover map, topographic and soil maps, together with tabular precipitation data used for soil erosion and soil salinity calculation. Meteorological data were measured directly as air temperature, wind speed, solar radiation, and precipitation. The experiment was conducted 2% sloped lysimeter ($5.0m{\times}20.0m$) with 14 treatments and it were separated by low salinity division (LSD) and high salinity division (HSD) install. The cation content in ground water increased during time course, but in the case of land surface water the content was variable, and $K^+$ was lower than that of $Na^+$ and $Mg^{2+}$. At the LSD under rainproof condition, the salinity was directly proportional to soil water content, but at the HSD the tendency was no reversed. In condition of rainproof, the amount of soil salinity was higher at the HSD than at the LSD. Positive correlation was obtained between the soil water content and available phosphorous content at the rainfall division, but there was no significance at the surface soil of the rainproof division. Sodium adsorption ratio and anion contents in soil were repressed in the order of vinyl-mulching > non-mulching > bare field. According to the result of analyzing soil loss, soil loss occurred in a vinyl-mulching, a non-mulching and a bare field in size order, and also approximately 11.2 ton/ha soil loss happened on the reclaimed land area. The average soil loss amount by the unit area takes place in a non-mulching and bare field a lot. Our results indicate that soluble salt control and soil erosion are critical at reclaimed tidal saline soil and the results can provide some useful information for deciding management plans to reduce soil loss and salt damage for stable crop production and diverse utilization or cultivation could be one of the management options to alleviate salt damage at reclaimed tidal saline soil in Korea.

  • PDF

Distribution of Potassium Fractions and Soil Parameters Related to the Potassium Availability of Upland Soils (밭토양(土壤)의 칼륨형태별(形態別) 함량분포(含量分布) 및 칼륨비옥도(肥沃度) 관련지표(關聯指標))

  • Park, Yang-Ho;Ryu, In-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.3
    • /
    • pp.179-188
    • /
    • 1994
  • This study was conducted to investigate the distribution of potassium fractions and to establish the soil chemical indices for assessing potassium availability in upland soil. Soil samples were collected from 66 vegetable crop fields of Chungbuk Jungweon, Jeonbuk Imsil and Kyengbuk Euiseong and these samples were analyzed water soluble(W. S. -K), exchangeable(Exch. -K) and nonexchangeable potassium(Nonex. -K). The distribution of potassium fractions was examined for soils having different physico-chemical properties and compared with the soil parameters related to the potassium availability. 1. The distribution ranges of W.S.-K, Exch.-K and Nonex.-K were 0.07~1.42, 0.27~2.30, and 0.84~4.74me/100g, and average contents of relevent fractions were 0.40, 1.03 and 2.37me/100g respectively. 2. Contents of W.S.-K and Exch.-K were decreased with increasing soil pH, CEC, Exch. Ca and Exch. Mg contents but Nonex. -K showed a low correlationship with these factors. 3. Exch.-K content slightly inereased with increasing clay content, while W.S.-K and Nonex. -K contents were grandually decreased with clay contents. 4. The relationship between W.S.-K and Exch.-K was significant and W.S.-K was released from soil at 0.23me/100g content of Exch.-K 5. Contents of W.S-K and Exch.-K showed high correlationship with soil chemical parameters such as ratio of exchangeable cations(K/Ca+Mg), ratio of exchangeable cation equivalent[$K/{\sqrt{Ca+Mg}}:(me/100g)^{1/2}$], potassium exchangeable free energy(${\Delta}F=RT$ 1n $K/{\sqrt{Ca+Mg}}$ : calories/mole) and saturation percentage of potassium($Exch.K/CEC{\times}100$), and these factors were considered to be good parameters for assessing soil potassium availability.

  • PDF

Forest Vegetation and Soil Environment on Mt. Paekun (백운산의 삼림식생과 토양환경)

  • 이호준;배병호;정흥락;전영문;홍문표
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.1
    • /
    • pp.35-50
    • /
    • 1999
  • The relationship between floristic composition and soil environmental conditions was investigated in the forest vegetation of Mt. Paekun. The forest vegetation unit of Mt. Paekun was divided into six plant communities by Zurich-Montpellier method, such as Quercus mongelica community (Typical subcommunity, Rhododendron schlippenbaohii subcommunity), Q. variabilis community, Fraxinus rhynchophylla community, Pinus densiflora community, Larix Eeptolepis community and Pinus koraiensis community. Q. mongolica community group was distributed at the altitude over 500 meter, Q. variabilis and P. densiflora communities appeared on the southwestern slope at the altitudes of 600 ~ 700 m and 290 ~ 700 m. However, L. leptolepis and P. koraiensis plantation were distributed at lower altitude, on hillside or around homestead. The DBH class distribution of dominant species in each community showed that Q. mongolica had 10.9 individuals/a at 6~10 cm class, Q. variabilis 2.5 individuals/a at 11~15 cm class, P. densiflora 1.8 individuals/a at 26~30 cm class, F. rhynchophylla 3.3 individuals/a at 2~5 cm class, and L. leptolepis 5.9 individuals/a at 11~ 15 cm class. Q. mongolica and Q. variabilis communities showed a stable bell-shaped pattern of distribution. The contents of organic matters and soil water, and cation exchange capacity of the soil increased, and the pH decreased as the altitude gets higher increased altitude at the each communities. The contents of the soil water and organic matters of the forest soil collected in Q. mongolica community were in the 17.81% to 51.20% and 5.51% to 14.90%, respectively. These tendency is similar to the contents of N, P and K, but those of Ca, Mg, and CEC was lower than in other communities. Cation exchange capacity was suspected to be correlated to the pH. The hypothetical successional sere of the forest vegetation of Mt. Paekun is as follows: Pinus densiflora community longrightarrowQ. variabilis community longrightarrowQ. mongolica community.

  • PDF