Browse > Article
http://dx.doi.org/10.14578/jkfs.2022.111.4.530

Physical and Chemical Properties of Soils in Quercus acutissima, Q. mongolica, Q. serrata, and Q. variabilis stands  

Sang Tae, Lee (Forest Technology and Management Research Center, National Institute of Forest Science)
Sang Hoon, Chung (Forest Technology and Management Research Center, National Institute of Forest Science)
Choonsig, Kim (Division of Environmental and Forest Science, Gyeongsang National University)
Publication Information
Journal of Korean Society of Forest Science / v.111, no.4, 2022 , pp. 530-537 More about this Journal
Abstract
This study was conducted to compare the physical and chemical properties of soils in Quercus acutissima, Q. mongolica, Q. serrata, and Q. variabilis stands. A total of 423 plots (Q. acutissima 72 plots, Q. mongolica 150 plots, Q. serrata 97 plots, and Q. variabilis: 104 plots) were examined to determine the soil properties of A and B horizons throughout the country. The physical and chemical properties of soils were significantly different among the four different Quercus spp. stands. The sand content in both horizons was significantly higher in Q. acutissima stands than in the other three oak stands, whereas the clay content was lowest among the four stands. The soils in Q. mongolica and Q. serrata stands were more acidified than those in Q. acutissima and Q. variabilis stands. The concentrations of organic carbon and total nitrogen in both soil depths were significantly higher in Q. mongolica stands than in Q. serrata, Q. variabilis, and Q. acutissima stands. The content of available phosphorus was significantly higher in Q. mongolica and Q. serrata stands than in Q. acutissima and Q. variabilis stands; whereas the contents of exchangeable potassium, calcium, and magnesium were lower in Q. mongolica and Q. serrata stands than in Q. acutissima and Q. variabilis stands. The cation exchange capacity was highest in Q. mongolica stands, followed by that in Q. serrata, Q. variabilis, and Q. acutissima stands. These data indicate the need to design a nutrient management plan to enhance the low soil pH and exchangeable cation in Q. mongolica and Q. serrata stands.
Keywords
forest soils; oak forests; oak soils; soil nutrients; soil property;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Aponte, C., Garcia, L.V., Perez-Ramos, I.M., Gutierrez, E. and Maranon, T. 2011. Oak trees and soil interactions in Mediterranean forests: a positive feedback model. Journal of Vegetation Science 22(5): 856-867.   DOI
2 Ayres, E., Steltzer, H., Berg, S., Wallenstein, M.D., Simmons, B.L. and Wall, D.H. 2009. Tree species traits influence soil physical, chemical, and biological properties in high elevation forests. PLoS One 4(6): e5964.
3 Berges, L., Chevalier, R., Dumas, Y., Franc, A. and Gilbert, J.M. 2005. Sessile oak (Quercus petraea Liebl.) site index variations in relation to climate, topography and soil in even-aged high-forest stands in northern France. Annals of Forest Science 62(5): 391-402.   DOI
4 Binkley, D. 1995. The influence of tree species on forest soils: processes and patterns. pp. 1-33. In : Mead, D.J. and Cornforth, I.S. (Eds.). Proceedings of the Trees and Soil Workshop. Agronomy Society of New Zealand Special Publication #10. Lincoln University Press. Canterbury, New Zealand.
5 Binkley, D. and Fisher, R.F. 2020. Ecology and Management of Forest Soils. 5th edition John Wiley & Sons Ltd. Glasgow UK. pp. 440.
6 Choi, H.J., Jeon, I.Y., Shin, C.H., and Mun, H.T. 2006. Soil properties of Quercus variabilis forest on Youngha valley in Mt. Worak National Park. Journal of Ecology and Environment 29(5): 439-443.
7 Diaz-Maroto, I.J. and Vila-Lameiro, P. 2008. Chemical properties and macronutrients of oak soils in Northwest Spain. Communications in Soil Science and Plant Analysis 39(9-10): 1416-1435.   DOI
8 Gan, H.Y., Schoning, I., Schall, P., Ammer, C. and Schrumpf, M. 2020. Soil organic matter mineralization as driven by nutrient stoichiometry in soils under differently managed forest stands. Frontiers in Forests and Global Change 3: 99.
9 Jeong, J.H., Koo, K.S., Lee, C.H. and Kim, C. 2002. Physico-chemical properties of Korean forest soils by regions. Journal of Korean Society of Forest Science 91(6): 694-700.
10 Jung, S.Y., Lee, K.S., Lee, S.H., Park, Y.B. and An, K.W. 2017. The effects of physico-chemical soil properties on the site index of sawtooth oak (Quercus acutissima Carruth.) in the Korean peninsula - Including offshore islands and coastal areas -. The Journal of Korean Island 29(4): 301-322.
11 Kalra, Y.P. and Maynard, D.G. 1991. Methods Manual for Forest Soil and Plant Analysis. Forestry Canada, Northwest Region, Northern Forestry Centre, Edmonton, Alberta. Information Report NOR-X-319E. pp. 116.
12 Kim, T.U., Sung, J.H., Kwon, T.S., Chun, J.H. and Shin, M.Y. 2013. Assessment of productive areas for Quercus acutissima by ecoprovince in Korea using environmental factors. Journal of Korean Society of Forest Science 102(3): 437-445.
13 Kim, Y.H. and Kim, J.W. 2017. Distributional uniqueness of deciduous oaks (Quercus L.) in the Korean peninsula. Journal of the Korean Society of Environmental Restoration Technology 20(2): 37-59.   DOI
14 Lee, S.T., Chung, S.H. and Kim, C. 2022. Carbon stocks in tree biomass and soils of Quercus acutissima, Q. mongolica, Q. serrata, and Q. variabilis stands. Journal of Korean Society of Forest Science 222(3): 365-373.
15 Korea Forest Service and National Institute of Forest Science. 2021. Tree Volume, Biomass and Stand Yield Table. Research Note of National Institute of Forest Science No. 979. pp. 373.
16 Lee, S.W., Won, H.K., Shin, M.Y., Son, Y.M. and Lee, Y.Y. 2007. Estimation of forest productive area of Quercus acutissima and Quercus mongolica using site environmental variables. Korean Journal of Soil Science and Fertilizer 40(5): 429-434.
17 Lee, S.J., Yim, J.S., Son, Y.M., Son, Y. and Kim, R. 2018. Estimation of forest carbon stocks for national greenhouse gas inventory reporting in South Korea. Forests 9(10): 625.
18 Lee, W.K., Kim, C., Koo, K.S., Kim, Y.K., Byun, J.K. and Seo, H.S. 1996. Effects of soil properties on site productivity in Quercus variabilis stands. FRI Journal of Forest Science (Korea Republic) 53: 142-149.
19 Lee, Y.G., Sung, J.H., Chun, J.H. and Shin, M.Y. 2014. Effect of climate changes on the distribution of productive areas for Quercus mongolica in Korea. Journal of Korean Society of Forest Science 103(4): 605-612.   DOI
20 Levula, J., Ilvesniemi, H. and Westman, C.J. 2003. Relation between soil properties and tree species composition in a Scots pine-Norway spruce stand in southern Finland. Silva Fennica 37(2): 205-218.
21 Menendez-Miguelez, M., Alvarez-Alvarez, P., Majada, J. and Canga, E. 2015. Effects of soil nutrients and environmental factors on site productivity in Castanea sativa Mill. coppice stands in NW Spain. New Forests 46(2): 217-233.   DOI
22 Park, J.H., Hwang, J.Y., Jung, S.Y., Yoo, B.O. and Kim H.H. 2016. Estimation of the occurrence probability for Quercus mongolica and Quercus serrata using Binary Logit Model. Journal of Agriculture & Life Science 50(6): 27-36.
23 Mun, H.T., Kim, S.J. and Shin, C.H. 2007. Litter production and nutrient contents of litterfall in oak and pine forests at Mt. Worak National Park. Journal of Ecology and Field Bioligy 30(1): 63-68.
24 Park, B.B., Han, S.H., Hernandez, J.O., An, J.Y., Youn, W.B., Choi, H.S. and Jung, S.C. 2021. Leaf litter decomposition of deciduous Quercus acutissima Carruth. and evergreen Quercus glauca Thunb. in an inter-site experiment in three contrasting temperate forest stands in South Korea. Annals of Forest Science 78: 34.
25 Park, J.H., Chung, S.H., Kim, S.H. and Lee, S.T. 2020. Estimation of site index curve for 6 oak species in Korea. Journal of Agriculture & Life Science 54(3): 27-33.
26 Paulo, J.A., Palma, J.H.N., Gomes, A.A., Faias, S.P., Tome, J. and Tome, M. 2015. Predicting site index from climate and soil variables for cork oak (Quercus suber L.) stands in Portugal. New Forests 46: 293-307.   DOI
27 Russell, A.E., Raich, J.W., Valverde-Barrantes, O.J. and Fisher, R.F. 2007. Tree species effects on soil properties in experimental plantations in tropical moist forest. Soil Science Society of America 71: 1389-1397.   DOI
28 SAS Institute Inc. 2003 Statistical Analysis System User's Guide: Statistical Version. 8th Edition, SAS Institute, Cary.
29 Serrasolses, I., Perez-evesa, M., Vilagrosa, A., Pausas, J.G., Sauras, T., Cortina, J. and Vallejo, R. 2009. Soil properties constraining cork oak distribution. pp. 89-91. In: Aronson, J., Pereira, J.S. and Pausas, J.G. (Eds.). Cork Oak Woodlands on the Edge: Ecology, Adaptive Management, and Restoration. Island Press. Detroit, MI, U.S.A.
30 Ter Braak and Smilauer. 2018. Canoco Reference Manual and User's Guide: Software for Ordination (Version 5.10). Microcomputer Power, Ithaca, NY, U.S.A, pp. 536.
31 Woolery, M.E., Olson, K.R., Dawson, J.O. and Bollero, G. 2002. Using soil properties to predict forest productivity in southern Illinois. Journal of Soil and Water Conservation 57(1): 37-45.