• Title/Summary/Keyword: Soil brick

Search Result 46, Processing Time 0.029 seconds

Laboratory analysis of loose sand mixed with construction waste material in deep soil mixing

  • Alnunu, Mahdi Z.;Nalbantoglu, Zalihe
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.559-571
    • /
    • 2022
  • Deep soil mixing, DSM technique has been widely used to improve the engineering properties of problematic soils. Due to growing urbanization and the industrial developments, disposal of brick dust poses a big problem and causes environmental problems. This study aims to use brick dust in DSM application in order to minimize the waste in brick industry and to evaluate its effect on the improvement of the geotechnical properties. Three different percentages of cement content: (10, 15 and 20%) were used in the formation of soil-cement mixture. Unlike the other studies in the literature, various percentages of waste brick dust: (10, 20 and 30%) were used as partial replacement of cement in soil-cement mixture. The results indicated that addition of waste brick dust into soil-cement mixture had positive effect on the inherent strength and stiffness of loose sand. Cement replaced by 20% of brick dust gave the best results and reduced the final setting time of cement and resulted in an increase in unconfined compressive strength, modulus of elasticity and resilient modulus of sand mixed with cement and brick dust. The findings were also supported by the microscopic images of the specimens with different percentages of waste brick dust and it was observed that waste brick dust caused an increase in the interlocking between the particles and resulted in an increase in soil strength. Using waste brick dust as a replacement material seems to be promising for improving the geotechnical properties of loose sand.

Natural Purification Treatment using Soil Brick with Combined Effective Microorganisms and Emergent Plants (복합유용미생물 및 수생식물을 활착시킨 흙블록을 이용한 자연정화 처리방법 연구)

  • Sim, Hagjae;Oh, Yongkeol;Park, Chulhwi;Kang, Wonsu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.5
    • /
    • pp.543-550
    • /
    • 2015
  • In this study, using soil brick with combined effective microorganisms and emergent plants was identified which it can increase the effect of conservation and improvement of water. Lab-test was consist of four kind of reactors and each of reactors were A(rawwater), B(soil brick), C(emergent plant) and D(soil brick+emergent plant). Iris pseudoacorus, Phargmites australis, Typha angustifolia and Zizania latifolia were used for emergent plant. Evaluation of application on various environment were performed on agricultural waterway and pond. The pH measurement test of soil brick was performed due to evaluate whether a strong alkaline water flows out of the soil brick. Result of lab-test, removal efficiency of D was better than removal efficiency of A presenting 20.9%, 27.9% 21.5%, 33.8% and 58.4% for $COD_{Cr}$, $BOD_5$, TN, TP and TSS respectively. Removal efficiency of soil brick on agricultural waterway was revealed to be 49.5%, 45.0%, 43.7%, 37.3% and 28.6% for $COD_{Cr}$, $BOD_5$, TN, TP and TSS respectively. And removal efficiency of soil brick on the pond was revealed to be 12.7%, 10.5%, 9.32%, 10.4% and 36.3% for $COD_{Cr}$, $BOD_5$, TN, TP and TSS respectively. Result of pH measurement test of soil brick was neutral which was about 6 to 8.

Unconfined Compressive Strength of Reinforced Soil Brick (보강흙벽돌의 일축압축 강도특성분석)

  • 장병욱;강상욱;박영곤
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.594-598
    • /
    • 1999
  • To analyze the characteristics of unconfined compressive strength of reinforced soil bricks made of clayey and sandy mixed with cement, lime, staple fiber and their combinatioin , a series of unified comparessive tests was performed. The resutls are summarized as follows ; 1) Reinforcing effect of reinforced clayed soil and that of soil brick of sandy soil mixed with cement and staple fiber is 8 times greater than no reinforced sandy sol. Therefore, the reinforcing effect seems to be greater in sandy soil than in clayey soil . 2) Lime shows a negative reinforcing effect in clayed soil but a little reinforcing effect in sandy soil. 3) It is appeared that strain at failure of soil brick reinforced with staple fiber is greater than that of unreinforced brick regrardless of soil's type.

  • PDF

Application of sugarcane bagasse ash in the production of low cost soil-cement brick

  • Amaral, Mateus C.;Holanda, Jose N.F.
    • Advances in environmental research
    • /
    • v.6 no.4
    • /
    • pp.255-264
    • /
    • 2017
  • This work investigated the use of sugarcane bagasse ash (SCBA) generated by an energy cogeneration process in sugarcane mill as an alternative raw material in soil-cement brick. The SCBA obtained from a sugarcane mill located in southeastern Brazil was characterized with respect to its chemical composition, organic matter content, X-ray diffraction, plasticity, and pozzolonic activity. Soil-cement bricks were prepared by pressing and curing. Later, they were tested to determine technical properties (e.g., volumetric shrinkage, apparent density, water absorption, and compressive strength), present crystalline phases, and microstructural evolution. It was found that the SCBA contains appreciable amounts of silica ($SiO_2$) and organic matter. The results showed that the SCBA could be used in soil-cement bricks, in the range up to 30 wt.%, as a partial replacement for Portland cement. These results suggest that the SCBA could be valorized for manufacturing low-cost soil-cement bricks.

Thermal Characteristics of Permeable Block Pavements for Landscape Construction (조경용 투수성 블록포장의 열특성)

  • Han, Seung-Ho;Ryu, Nam-Hyong;Yoon, Yong-Han;Kim, Won-Tae;Kang, Jin-Hyoung
    • Journal of Environmental Science International
    • /
    • v.17 no.5
    • /
    • pp.573-580
    • /
    • 2008
  • This study aims to measure and to analyze the characteristics of thermal environment of the various permeable pavement materials such as a break stone pavement (Green block cubic), soil protection pavement (Soil tector), soil cement pavement and ceramic brick pavement under the summer outdoor environment. The thermal environment characteristics measured in the study includes the changes of surface temperature during the day, and long and short wave radiation of each pavement surface. The experimental condition is based on the data on the hottest temperature (August 9, 2006, $37.1^{\circ}C$) of the year. The albedo was the highest on the break stone pavement(0.8) from 12:00 to 14:00. The albedo of the ceramic brick pavement, a soil tector pavement and soil cement pavement were 0.35, 0.29 and 0.27 from 12:00 to 14:00, respectively. The peak surface temperature and long wave radiation was the highest on the soil protection pavements($56.6^{\circ}C$/627 W/$m^2$). The peak surface temperatures and long wave radiation on the ceramic brick pavement, a stone brick pavement and soil cement pavement were $51.7^{\circ}C$/627 W/$m^2$, $48.8^{\circ}C$/607 W/$m^2$ and $45.9^{\circ}C$/582 W/$m^2$, respectively. The heat environment was better on the break stone pavement than on the other pavements. This is mainly due to the high albedo of the break stone pavement(0.8) while the albedo value of a ceramic brick pavement, a soil tactor pavement and soil cement pavement were 0.35. 0.29 and 0.27. Large heat capacity($2,629kJ/m^3{\cdot}K$) of the stone brick pavements also contributes to this difference. The heat environment was better on the soil cement pavement than the soil tector pavement. This is mainly due to the evaporation of the soil cement pavement while the active evaporation of the soil tactor pavement was not continued after two days from the rainfall event. To improve the thermal environments in the urban area, it is recommended to raise the albedo of the pavements by brightening the surface color of the pavement materials. Further studies on the pavement materials and the construction methods which can enhance the continuous evapotranspiration from the pavements surface are needed.

A Study about the Relations between Brick Pagodas and Stone Brick Pagodas in Korea (한국(韓國) 전탑(甎塔)과 모전석탑(模甎石塔)의 관계성(關係性)에 관한 연구(硏究))

  • Han, Wook;Kim, Ji-Hyeon
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.7
    • /
    • pp.81-88
    • /
    • 2019
  • The purpose of this study is to investigate the relations between brick and stone brick pagodas in all classes of pagoda with their construction and shape. Research objects of this study are brick and stone brick pagodas of National Treasure and Treasure and masonry pagodas that are similar to brick and stone brick pagoda. This study includes checking preceding researches, drawing questions from these preceding researches, and finding answers from these questions. The results of this study are as follows. First, pagoda of Bunhwangsa Temple, the first pagoda in the Silla Dynasty, was built as a masonry pagoda, not a stone brick pagoda. Second, roofs of stone brick pagoda barrows from brick pagoda's techniques for performance of material and ease construction. Third, brick or stone brick pagodas' base have Type II that has low and extensive foundation with soil and stones usually. Forth, Korean pagodas are categorized by their materials, construction methods, and shapes. Wooden pagodas, stone pagodas, and brick pagodas are categorized by materials, post-and lintel pagodas and masonry stone pagodas are categorized by construction methods, and pitched roof pagodas and terraced roof pagodas are categorized by shapes. Fifth, masonry pagodas of Buddhism that have shape of multi-story building were developed from Doltap, traditional stone stack, and they advanced with brick pagodas and stone pagodas to terraced roof stone pagodas and post-and lintel base brick pagodas.

The Effect on the growth of landscaping trees by fixed trampling in brick paved under-surface soil physical properties -Sand bed's thickness & prticle size were setted by experimental variable factors (일정 답압시 보도블럭포장재 하부 토양물리성의 변화가 조경수 생육에 미치는 영향 - 포설모레 두께 및 립경을 실험변이 인자로 설정하여 -)

  • 조재현
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.25 no.2
    • /
    • pp.94-103
    • /
    • 1997
  • The purpose of this study is to find out the effects of brick paved under-surface soil physical properties which are changed by fixed trampling. Thus, a sandy loam which is known as a profitable soil for plants is used an experimental soil to study the changes of the soil physical properties. It is related to sand bed's thickness & particle size which are settled by experimental variable factors. According to the variation of sand bed's particle size, bulk density and soil hardness at natural dryed soilcondition result in 0.075~2.00mm>2.00~5.00mm>2.00~8.00mm>5.00~8.00mm, and water content at natural dryed soil condition are observed being insensible change rate from the point that sand thickness is 30~40mm and more sand bed's thickness constructed by the variation of sand bed's thickness.

  • PDF

The Effect of Pervious Pavement on Reducing the Surface Runoff (투수성 포장재의 우수 표면유출 저감 효과)

  • Lee, Chun-Seok;Ryu, Nam-Hyung;Han, Seung-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.6
    • /
    • pp.26-37
    • /
    • 2008
  • The purpose of the study was to evaluate the effect of pervious pavements on reducing the surface runoff caused by rainfall. The surface runoff from twelve steel experimental beds with different pavement had been recorded every minute from May to September 2008, by the measuring system of tipping buckets(0.1mm/count) and data aquisition systems(National Instrument's Labview and DAQ boards & Autonics PR12-4). The dimension of the experimental bed was $1.5m(W){\times}2.0m(L){\times}0.6m(D)$ and eleven different kinds of vegetational(grass, grass+cubic stone, grass+hole brick), modular(brick, cubic stone, small cubic stone, wood block, interlocking block, clay brick, granular clay brick) and granular(naked soil, gravel) paving materials and concrete were applied for the comparison. Six rain events with depth over 30mm were selected and compared. The maximum depth of the rainfall selected was 137.5mm for 28 hours, and the minimum 30mm for 5 hours. The maximum rainfall per hour was 23mm/hr and the minimum 11.4mm/hr. The major findings were as follows; 1. All pervious pavement applied reduced over 75% of the surface runoff compared with concrete pavement. The grassy and porous pavements were relatively efficient in reducing surface runoff. 2. The grass was the more efficient as intercepting average 69.5mm of initial surface runoff, and maximum 77.8mm at the condition of 13.5mm/hr rainfall. The next was gravel intercepting maximum 65.5mm at the condition of 13.5mm/hr and the 40.9mm at 19.1mm/hr, average 55.7mm. 3. The modular pavements common in urban area were not good in intercepting the runoff except the 'clay granular brick' compared with others. The 'clay granular brick' showed relatively efficient intercepting average 14.1mm, which was the bigger amount than the 'grass+hole brick'. 4. The 'naked soil' were more effective than the 'concrete', 'brick', and 'interlocking block' in reducing the surface runoff, but less efficient than other materials. The capacity of the 'naked soil' to intercept the initial rainfall was similar to the 'brick'. As summary, the more grassy and porous pavement shows more effective in reducing surface runoffs.

Study on Solidification and Strength of Soft Soils by Using Waste Magnesia-Carbon Powder (폐 Magnesia-Carbon Powder를 이용한 연약지반 고형화 및 강도 증진에 대한연구)

  • Choi, Hun;Song, Myong Shin;Kang, Hyung Ju;Jung, Eui Dam;Kim, Ju Seng
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.35-40
    • /
    • 2011
  • Magnesia-carbon brick is used to refractory material in Converter and/or Ladle furnace for molten steel manufacturing. The rapid growth of steel making industry, molten steel industry is increased. Therefore, growth of molten steel industry lead to make waste magnesia-carbon brick by repair of Converter and/or Ladle furnace. These waste magnesia-carbon brick is abandoned all. Besides, as it is loosely composed of silt and clay including sand falling according to the type of gangue, rainwater inflows and outflows relatively easily, but silt or clay particles absorb water for a long period, weakening ground. This study tried to show that when colluvial soil is solidified using waste magnesia-carbon brick powder as a way to solidify strengthen the rigidity of colluvial soil.

Investigation of Defects and Damage on External Wall in Brick Structures of Modern Architectural Properties - Focused on "Naju Noahn Catholic Church" - (벽돌조 건축문화재 외벽체의 훼손 현황 및 원인 조사 -나주노안천주교회를 중심으로-)

  • Woo, Nam-Sic;Kim, Tai-Young
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.15 no.1
    • /
    • pp.29-36
    • /
    • 2013
  • This study is to diagnose causes of damage and defects on external walls of brick structures, focused on "Naju Noahn" Catholic Church of Modern Architectural Properties. The causes of crack and deflection are overloading, shortage strength of arch. Among those, main cause is cauesd by shortage strength of arch because center of arch is dislocated and skew back of arch is small angle. The causes of damage and elimination are weathering, plants of friction, freezing and thawing, durability decrement of material and attach defection. This defects and damage is caused by high-moisture that occurs in soil. The causes of discoloration are change of soil moisture and flimsy brickwork. These defects and damage are mainly occurred in coping of cornice, weathering of window sill.