• Title/Summary/Keyword: Soil biofilter

Search Result 34, Processing Time 0.023 seconds

Geotrichum sp.를 이용한 biofiltration에서의 methyl ethyl ketone 제거

  • Choe, Jae-Heon;Park, Gyeong-Ran;O, Yeong-Suk;Choe, Seong-Chan
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.560-563
    • /
    • 2001
  • Geotrichum sp. MF01, isolated from oil-contaminated soil, utilized methyl ethyl ketone(MEK) as the sole source of carbon and energy. The strain MF01 showed a Michaelis-Menten kinetics on MEK, and the kinetic parameters determined for MEK degradation were; specific removal rate, $r_{max}$ = 0.14 $h^{-1}$; half-saturation constant, $K_m$ = 5.88 mM. The adsorption of MEK by heat-killed strain was 0.62 mg at 8.07 mg MEK indicating that the degradation was the primary removal mechanism over adsorption. Biodegradation of MEK was studied in a biofilter using perlite, vermiculite 0:1, v/v) as supporting material. During 57 days of biofilter operation, $^3h^{-1}$.

  • PDF

Biofiltration of Odorous Compounds in Municipal Solid Waste Landfill Gases (생물탈취상에 의한 도시폐기물 매립지가스내 악취물질의 처리)

  • 남궁완;박준석;황의영;이노섭;인병훈;김정대
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.1
    • /
    • pp.85-96
    • /
    • 1999
  • Biofiltration is an attractive technique for elimination of VOCs and odorous compounds from low-concentration, high-volume waste gas streams because of its simplicity and cost-effectiveness. The objective of this study was to estimate the removal characteristics of Odorous Compounds including $H_2$S, $NH_3$End BTEX in MSW landfill gases. This Study was conducted at Nanjido landfill site. A compost from the Nanjido composting facility was used as a filling material for biofiltration. Extracted landfill gases were injected into biofilter reactors after mixing with air. Experiments were performed in an incubator being set to $20^{\circ}C$ $H_2$S concentrations were monitored at the depths of 25, 50, 75 and 100cm from the bottom Of the biofilter reactors. 98% of $H_2$S was removed at the filling depth of only 25cm. NH$_3$removal rate was about 85%. Toluene removal rate was the highest among BTEX. Significant pH drop of a filling material was not observed during the biofilter operation of 1 month. Without mixing the landfill gas stream with all, the removal rate of $H_2$S decreased down to 30%.

  • PDF

A Study of Optimal Mixture Fraction of Soil Bio-Filter for Removing NOX (질소산화물 제거를 위한 최적 토양 바이오 필터 혼합비 도출에 관한 연구)

  • Cho, Ki-Chul;Lee, Nae-Hyun
    • Journal of Environmental Science International
    • /
    • v.16 no.11
    • /
    • pp.1247-1255
    • /
    • 2007
  • Soil biofiltration is an environmentally-sound technology for elimination of VOCs, odorous and $NO_X$ compounds from a low concentration, high volume waste gas streams because of its simplicity and cost-effectiveness. This study investigated the optimal mixture fraction of briquet ash, compost, soil and loess for $NO_X$ degradation. Extreme vertices design was used to examine the role of four components on $NO_X$ degradation. Under our experimental conditions, 74.5% of $NO_X$ degradation was observed, using a model mixture(25% briquet ash, 10% compost, 30% soil and 40% loess) containing 100 ppb of NO. It was shown that experimental design analysis could allow selecting optimal conditions in such biodegradation processes in this study.

Characteristics of Hydrogen-sulfide(H2S) removal by a Biofilter with Organic Materials, Peat and Rock wool (유기담체인 Peat 및 Rock wool을 사용한 바이오필터에 의한 황화수소(H2S)의 제거특성)

  • Kim, Nam-jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.3
    • /
    • pp.136-144
    • /
    • 2001
  • Two organic materials, peat and rock wool were used for removal of $H_2S$ by a biofilter inoculated with night soil sludge. By gradually increasing the inlet load of $H_2S$, the complete removal capacity, which was defined as the inlet load of $H_2S$ that was complete removed, and the maximum removal capacity of $H_2S$, which was the value when the removal capacity leveled off for organic materials, were estimated. Both values for Rock wool are larger than peat, based on a unit dry weight of material. By using kinetic analysis, the maximum removal rate of $H_2S$, $V_m$, and the saturation constant, $K_s$, were determined for all packing materials and the values of $V_m$ for rock wool was found to be larger. By using the kinetic parameters, the removal rates for $H_2S$ were compared both packing materials, and rock wool showed better performance for the removal of $H_2S$ in the inlet concentration range of 0~200ppm.

  • PDF

Minimizing the Environmental Pollution of Pig Husbandry and Waste Management

  • Mszros, Gy;Kuli, B.;Fenyvesi, L.;Mtys, L.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1395-1404
    • /
    • 1993
  • Application of water-saving self-feeders can reduce water consumption of pigs by more than 50% . so the feeding-watering system one of the most important way of the reduction of the slurry. Bioactive deep litter housing can eliminate slurry. Matured urine, faeces and litter can use for the purposes of soil conditioning and fertilizing . Water-saving slurry handling technology can halve manure dilution so it can double the nutrient content of the slurry. By using of straw bale biofilter for reducing emissions of pig houses makes fattening of pigs possible close to populated area. Developed rate control system for slurry application make avoiding over-fertilization possible , can fulfill better the demand of nutrient of plants. By means of computer aided manure utilization system area distribution of soil characteristics can determinate . The system is suitable for planning the utilization of manure and slurry in environment -friendly way.

  • PDF

Treatment of Malodorous Waste Air Containing Ammonia Using Biofilter System (바이오필터시스템을 이용한 암모니아 함유 악취폐가스 처리)

  • Lee, Eun Ju;Park, Sang Won;Nam, Dao Vinh;Chung, Chan Hong;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.391-396
    • /
    • 2010
  • In this research the characteristics of ammonia removal from malodorous waste-air were investigated under various operating condition of biofiilter packed with equal volume of rubber media and compost for the efficient removal of ammonia, representative source of malodor frequently generated at compost manufacturing factory and publicly owned facilities. Then the optimum conditions were constructed to treat waste-air containing ammonia with biofilter. Biofilter was run for 30 days(experimental frequency of 2 times/day makes 60 experimental times.) with the ammonia loading from $2.18g-N/m^3/h$ to $70g-N/m^3/h$ at $30^{\circ}C$. The ammonia removal efficiency reached almost 100% for I through IV stage of run to degrade up to the ammonia loading of $17g-N/m^3/h$. However the removal efficiency dropped to 80% when ammonia loading increased to $35g-N/m^3/h$, which makes the elimination capacity of ammonia $28g-N/m^3/h$ for V stage of run. However, the removal efficiency remained 80% and the maximum elimination capacity reached $55g-N/m^3/h$ when ammonia loading was doubled $70g-N/m^3/h$ for VI stage of run. Thus the maximum elimination capacity exceeded $1,200g-N/m^3/day$(i.e., $50g-N/m^3/h$) of the experiment of biofilter packed with rock wool inoculated with night soil sludge by Kim et al.. However, the critical loading did not exceed $810g-N/m^3/day$ (i.e., $33.75g-N/m^3/h$) of the biofilter experiment by Kim et al.. The reason to exceed the maximum elimination capacity of Kim et al. may be attributed to that the rubber media used as biofilter packing material provide the better environment for the fixation of nitrifying and denitrification bacteria to its surface coated with coconut based-activated carbon powder and well-developed inner-pores, respectively.

Bioreactor Systems for the Cometabolic Biodegradation of Trichloroethlene (트리클로로에틸렌의 공동대사적 생분해를 위한 생물반응기 시스템)

  • 이은열
    • KSBB Journal
    • /
    • v.16 no.6
    • /
    • pp.527-532
    • /
    • 2001
  • Trichlooethylene (TCE) has become a widespread contaminant in air, soil, and underground water due to extensive industrial used and improper disposals. Since TCE is a suspected carcinogen and constitutes public health concerns, many treatment systems have been investigated to remove this hazardous waste. One of the most premising reactor systems for the treatment of TCE is trickling biofilter (TBF), in which monooxygenase (MO), the corresponding enzyme for initiating primary substrate oxidation, fortuitously degrades TCE via cometabolism. TCE, however, is not easily treated by simple TBF. This is mainly due to the toxicities of TCE and its degradation products to microbial film in TBF. In this paper, recent progresses on the development of bioreactor system for the treatment of TCE, especially gas-phase TCE, are reviewed. The potentials of novel biofilm reactor systems were also discussed for the long-term continuous treatment of TCE.

  • PDF

Odor Removal by Using Compost and Granular Scrap Tires (퇴비 및 폐타이어 Granule을 이용한 악취 제거)

  • Chung, Yoon-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.1
    • /
    • pp.43-50
    • /
    • 1999
  • In spite of low energy requirement, and operation and construction cost, biofilters with soil beds have not been operated efficiently. Because of excess moisture in winter and rainy periods, saturated pores in the bed prevent passage and sorption of odorous compounds. Sometimes this results in septic conditions that release previously sorbed and oxidized sulfur. Therefore, an economical and effective alternative needs to be developed. The objectives of this study were to confirm applicability of the granular scrap tires with compost for treating odorous gas as well as to obtain optimum design parameters for proposed system. In lab-scaled test, multiple stage reactors had lower headloss than a single stage reactor and less headloss was occurred for the gas with higher moisture content. For practical purpose, pilot-scaled reactor was operated to remove odor from septic tank, manure and animal wastewater treatment plant and composting machine. According to the results of pilot scaled test, $H_2S$ can be always removed completely and ammonia/amine can be removed excellently when proper moisture content is provided. The results from lab and pilot test showed that granular scrap tire could be replaced with soil as supporting material for biofilter showed excellent drainage because of its ability to reject moisture.

  • PDF

Application of Earthworm Casting-derived Biofilter Media for Hydrogen Sulfide Removal (지렁이 분변토를 이용한 생물담체가 충전된 바이오필터에 의한 황화수소 제거)

  • Yoo, Sun-Kyoung;Lee, Eun-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.7
    • /
    • pp.820-825
    • /
    • 2007
  • Earthworm casting was the natural fertilizer that contained high concentrations of nutrients such as nitrogen, phosphate and potassium and of over $10^8$ CFU/ml of microorganisms. Greater than 80% of feed was excreted through the fermentation by the intestinal enzyme, after worm had eaten feeds such as fallen leaves and rotten roots under the ground. Also, the soil structure of casting was known to be very efficient in the aspects of the porosity, the water permeability, and deodorizing activities. In this research, the biofilter packed with a biomedia made of casting and waste polyurethane foam, a binder, which helped to improve the durability and perpetuity of casting, was investigated to degrade malodorous hydrogen sulfide gas. The biomedia had no need of extra supply of nutrients and of microbial inoculations. On the beginning of the operations, it showed 100% removal of hydrogen sulfide gas without lag phase. At SV of 50 $h^{-1}$, hydrogen sulfide gas from the outlet of the biofilter was not detected, when inlet concentration increased to 450 ppmv. After that, removal efficiency decreased as increasing inlet hydrogen sulfide concentration. Hydrogen sulfide removal was maintained at almost 93% until inlet concentration was increased up to 950 ppmv, at which the elimination capacity of $H_2S$ was 61.2 g $S{\cdot}m^{-3}{\cdot}h^{-1}$. Maximum elimination capacity guaranteing 90% removal was 61.2, 65.9, 84.7, 89.4 g $S{\cdot}m^{-3}{\cdot}h^{-1}$ at SV ranging from 50 $h^{-1}$ to 300 $h^{-1}$, but was 59.3 g $S{\cdot}m^{-3}{\cdot}h^{-1}$ at SV of 400 $h^{-1}$. The results calculated from Michaelis-Menten equation revealed that $V_m$ increased from 66.04, 88.96, 117.35, 224.15, to 227.54 g $S{\cdot}m^{-3}{\cdot}h^{-1}$ with increasing space velocity in the range of 50 $h^{-1}$ to 400 $h^{-1}$. However, saturation constant$(K_s)$ decreased from 79.97 ppmv to 64.95 and 65.37 ppmv, and then increased to 127.72 and 157.43 ppmv.

Biotechnology for the Mitigation of Methane Emission from Landfills (매립지의 메탄 배출 저감을 위한 생물공학기술)

  • Cho, Kyung-Suk;Ryu, Hee-Wook
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.293-305
    • /
    • 2009
  • Methane, as a greenhouse gas, is some 21~25 times more detrimental to the environmental than carbon dioxide. Landfills generally constitute the most important anthropogenic source, and methane emission from landfill was estimated as 35~73 Tg per year. Biological approaches using biocover (open system) and biofilter (closed system) can be a promising solution for older and/or smaller landfills where the methane production is too low for energy recovery or flaring and installation of a gas extraction system is inefficient. Methanotrophic bacteria, utilizing methane as a sole carbon and energy source, are responsible for the aerobic degradation (oxidation) of methane in the biological systems. Many bench-scale studies have demonstrated a high oxidation capacity in diverse filter bed materials such as soil, compost, earthworm cast and etc. Compost had been most often employed in the biological systems, and the methane oxidation rates in compost biocovers/boifilters ranged from 50 to $700\;g-CH_4\;m^{-2}\;d^{-1}$. Some preliminary field trials have showed the suitability of biocovers/biofilters for practical application and their satisfactory performance in mitigation methane emissions. Since the reduction of landfill methane emissions has been linked to carbon credits and trading schemes, the verified quantification of mitigated emissions through biocovers/biofilters is very important. Therefore, the assessment of in situ biocovers/biofilters performance should be standardized, and the reliable quantification methods of methane reduction is necessary.