• Title/Summary/Keyword: Soil bin

Search Result 262, Processing Time 0.032 seconds

Uptake and Accumulation of Arsenate on Lettuce (Lactuca sativa L.) Grown in Soils Mixed with Various Rates of Arsenopyrite Gravel (유비철석 입자 혼합 토양내 상추(Lactuca sativa L.)의 비소이온 흡수와 축적)

  • Shim, Ho-Young;Lee, Kyo-Suk;Lee, Dong-Sung;Jeon, Dae-Sung;Shin, Ji-Su;Kim, Soo-Bin;Cho, Jin-Woong;Chung, Doug-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.4
    • /
    • pp.532-538
    • /
    • 2014
  • Arsenic (As) is nonessential element toxic to plants. In Korea little is not only known about the extent of actual anthropogenic sources and inputs of arsenic to the agricultural land which plays a active role as a sink, but also systematic research on arsenic as an toxic element entering the food chain via the soil-plant pathway has not been investigated in the fields and greenhouses besides in few places of abandoned mining sites. Therefore, it is important to focus on the effect of As-contaminated soils on As uptake and biomass production of lettuce plants. In this study, As concentrations in the soil and accumulation of As in lettuce transferred by As uptake from soils were investigated. To do this, soil which was mixed with various rates of arsenopyrite gravels containing arsenic from 0 to 100% was packed into a round plastic pot. Then, 10 days old vegetable crops of chinese cabbage and lettuce after germination were transplanted into a pot. Growth of lettuce was observed for four weeks with one week interval. All experiments were done by triplicate. The results showed that the growth rates for number of leaves, width and length of the crop plants were retarded with increasing amount of gravel mixed due to increasing bioavailable amount of arsenate with increasing rate of gravel in soils. With these results, we conclude that the bioavailable amount of arsenate can influence the growth of lettuce.

Conversion of Ginsenoside $Rb_1$ by Ginseng Soil Bacterium Cellulosimicrobium sp. Gsoil 235 According to Various Culture Broths (인삼 토양 미생물 Cellulosimicrobium sp. Gsoil 235의 배지조성에 따른 Ginsenoside $Rb_1$ 전환)

  • Na, Ju-Ryun;Kim, Yu-Jin;Kim, Se-Hwa;Kim, Ho-Bin;Shim, Ju-Sun;Kim, Se-Young;Yang, Deok-Chun
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.1
    • /
    • pp.55-61
    • /
    • 2009
  • Ginseng saponins (a secondary metabolite, termed ginsenosides) are the principal bioactive ingredients of ginseng, and modification of the sugar chains may markedly change the its biological activity. One of soil bacteria having $\beta$-glucosidase (to transform ginsenoside $Rb_1$) activity was isolated from soil of a ginseng field in Daejeon. 16S rRNA gene sequence analysis revealed that the isolate belonged to the genus Cellulosimicrobium, with highest sequence similarity (99.7%) to Cellulosimicrobium funkei ATCC BAA-$886^T$. The strain, Gsoil 235, could transform ginsenoside $Rb_1$ into Rd, $Rg_3$ and 3 of un-known ginsenosides by the analyses of TLC, HPLC. By investigating its deglycosylation progress, the optimal broth for, $\beta$-glucosidase was nutrient broth (In 48 hours, almost ginsenoside $Rb_1$ could be transformed into minor ginsenosides). On the contrary, the optimal broth for growth was determined as trypic soy broth (TSB).

A study on development of CRM chrysotile in soil (토양 중 백석면 표준물질 개발에 관한 연구)

  • Choi, Yun-Ho;Kwon, Ye-Bin;Lee, Jin-Wook;Kim, Nam-Jun;Jeong, Min-Jong;Hwang, Beom-Goo;Lee, Jae-Hyung;Sun, Yle-Shik;Kim, Bak-Gil
    • Analytical Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.91-98
    • /
    • 2013
  • Interested in NOA (Naturally Occurring Asbestos), Korea as well as the USA has been making geologic maps of asbestos distributed mines and surrounding areas, restoring mines, evaluating hazard, and so on. The result can be used to improve the reliability of analysts and analysis institutions by judging the amount of asbestos and set up PLM(Polarizing Light Microscope) information by analyzing in soil. The certification value of 2 kinds of CRM(Certified Reference Material) was performed by counting total 400 points with EPA 600-R-93-116 method using by PLM. The following is the result of homogeneity and stability of 2 kinds of manufactured CRM analyzed by ANOVA (Analysis of variance) and Regression Analysis. Based on the analyzation, the results are satisfied with homogeneity and long-term stability. The analyzed certification value of CRM includes the range of minimum and maximum value of point counting result for chrysotile; low concentration-1% (range, 0.25~3.00), high concentration-4% (range, 2.25~5.50).

Leaching potential of butachlor, ethoprophos, iprobenfos, isoprothiolane and procymidone in soils as affected by adsorption characteristics (Butachlor, ethoprophos, iprobenfos, isoprothiolane 및 procymidone의 토양흡착성에 따른 용탈 잠재성 평가)

  • Kim, Chan-Sub;Lee, Byung-Moo;Ihm, Yang-Bin;Choi, Ju-Hyeon
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.4
    • /
    • pp.309-319
    • /
    • 2002
  • Soil adsorption study was carried out to define the mobility of pesticides or to evaluate leaching potential in soils. Five pesticides including ethoprophos, procymidone, iprobenfos, isoprothiolane, and butachlor were subjected to optimized adsorption experiment protocol for three types of cultivation soils. Freundlich adsorption coefficients (K) were ranged $0.35{\sim}0.95$ for ethoprophos, $0.98{\sim}2.2$ for iprobenfos, $1.2{\sim}4.3$ for procymidone, $1.5{\sim}3.5$ for isoprothiolane and $7.9{\sim}19$ for butachlor in three soils. Based on Koc values, ethoprophos was classified as mobile, iprobenfos, isoprothiolane and procymidone as moderately mobile and butachlor as slightly mobile. Two evaluation methods, Groundwater Ubiquity Score (GUS) index and standard indices of soil-chemical adsorption and biodegradation, were used for the estimation of pesticide leaching potential. Leachability of isoprothiolane and iprobenfos were evaluated as moderate, ethoprophos as a little potential, while butachlor and procymidone showed very low leaching potential. The leaching potential of pesticides was essentially determined on the basis of intrinsic properties of the pesticides and environmental properties. Among the soil properties, organic matter gave a great influence on the leachability of soils. Therefore, leachabilities of pesticides were expected less in loam with relatively higher organic matter than clay loam with lower organic matter.

Application of Waste Resources for the Stabilization of Heavy Metals (Pb, Cu) in Firing Range Soils (폐자원을 이용한 사격장 토양내 중금속(Pb, Cu) 안정화 처리)

  • Lee, Keun-Young;Moon, Deok-Hyun;Kim, Kyoung-Woong;Cheong, Kyung-Hoon;Kim, Tae-Sung;Khim, Jee-Hyeong;Moon, Kyoung-Ran;Choi, Su-Bin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.2
    • /
    • pp.71-76
    • /
    • 2011
  • In this study, a heavy metal stabilization treatment using waste resource stabilizing agents was utilized on army firing range soil contaminated with Pb and Cu. Both calcined oyster shells (COS; 5% w/w) and waste cow bone (WCB; 3% w/w) were applied for a wet-curing duration of 28 days. Following the stabilization treatment, the process efficiency was evaluated by various extraction methods for Pb and Cu. Neutral and weak acid extraction methods, such as water soluble extraction and SPLP, did not show positive results for heavy metal stabilization with very low leachability. On the other hand, TCLP and 0.1 N HCl extraction showed that the stabilizing agents significantly reduced the amount of the heavy metals leached from the soil, which strongly supports that the treatment efficiency is positively evaluated in acidic leaching conditions. Specifically, in the 0.1 N HCl extraction, the reduction efficiencies of Pb and Cu leaching were 99.9% and 83.9%, respectively. From the sequential extraction results, a difference between Pb and Cu stabilization was observed, which supports that Pb stabilization is more effective due to the formation of insoluble Pb complexes. This study demonstrates that the application of waste resources for the stabilization of heavy metals is feasible.

Factors and Recovery of Herbicide Phytotoxicity on Direct - seeded Rice - I. Variation Factors of Phytotoxicity (직파(直播)벼의 제초제(除草劑) 약해(藥害) 요인(要因)과 회복(回復)에 관한 연구(硏究) - I. 약해(藥害)의 변동(變動) 요인(要因))

  • Im, Il-Bin;Usui, K.
    • Korean Journal of Weed Science
    • /
    • v.16 no.4
    • /
    • pp.292-300
    • /
    • 1996
  • This experiment was conducted to investigate the factor of phytotoxicity for herbicides(bensulfuron methyl, pyrazosulfuron-ethyl, dimepiperate, molinate) on flood direct-seeded rice. The phytotoxicity of herbicides was evaluated under controlled environment condition. Bensulfuron methyl and pyrazosulfuron-ethyl reduced more rice growth, especially root growth on low temperature(20/$11^{\circ}C$) than high temperature(30/$22^{\circ}C$) cultivations. The phytotoxicity of bensulfuron methyl and pyrazosulfuron-ethyl were increased relatively by non-nutrient and nutrient solution. cultivation, respectively. The rice applied bensulfuron methyl and pyrazosulfuron-ethyl with pH 3.5, 5.5, 7.5 and 9.5 solution became low growth rate on low pH of pH 3.5 and 5.5 solution cultivation. Bensulfuron methyl application with pH 5.5 and pH 7.5 solution, and pyrazosulfuronethyl application with pH 7.5 and 9.5 solution reduced rice growth inhibition. The root growth of rice seeded in 6cm depth of water solution applied herbicides was suppressed by bensulftuon methyl and pyrazosulfuron-ethyl, the growth of shoot was suppressed heavily by dimepiperate and molinate, in particular dimepiperate suppressed about the growth of 90%. The phytotoxicity of pyrazosulfuron-ethyl became high on light clay soil of non-fertilizer condition and sand loam soil of fertilizer condition, bensulfuron methyl became high on sand loam soil.

  • PDF

Persistence and degradation of herbicide molinate in paddy-soil environment (논토양 환경 중 제초제 molinate의 잔류성과 분해특성)

  • Park, Byung-Jun;Park, Hyeon-Ju;Lee, Byung-Moo;Ihm, Yang-Bin;Choi, Ju-Hyeon;Ryu, Gab-Hee
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.1
    • /
    • pp.60-69
    • /
    • 2005
  • The herbicide molinate has been detected with high frequency in the main river during the growing season in Korea. To elucidate the exposure of molinate in agricultural environment, the persistence and the degradation characteristics of molinate were investigated in paddy ecosystems. The half-lives of molinate were 4.1 days with soil aquatic system, and 4.2 days in only aquatic system. Initial dissipation rate of molinate in water was greater with soil aquatic system than that of only aquatic system. Photolysis of molinate was occurred about 31.0% of molinate treated in pure water, when irradiated at 5,530 $J/cm^2$ by the xenon lamp, but its hydrolysis was stable. For the accelerated photolysis of molinate in aqueous solution, several photosensitizers were screened, showing that the hydroperoxide($H_2O_2$) and acetone were prominent among the chemical tested. When hydroperoxide and zinkoxide(ZnO) were used as photosensitizer, their photolysis were accelerated greater than 98% and 58% in aqueous solution, respectively. Elution rate of molinate as granular formulations in aqueous system was more than 90% in 30 hour at $35^{\circ}C$. Molinate concentration pattern in paddy water was rapidly decrease from treatment till 7 days in paddy rice field and its half-lives were 3.7 days($Y=1.9258{\times}e^{-0.1865X}$(r=-0.9402)).

A Study of the Holocene Climate Change Using Humus Analysis of the Nam River Basin in Jinju, Southern Part of Korea (휴무스분석을 통한 진주 남강유역의 홀로세 기후 변화 연구)

  • Jung, Heakyung;Kim, Cheong Bin
    • Journal of the Korean earth science society
    • /
    • v.33 no.6
    • /
    • pp.510-518
    • /
    • 2012
  • The Holocene climate change has been studied based on humus analysis of sediments that came from the Nam River basin in the Jinju, Gyeongnam. Humus and soil organic carbon analyses were performed to interpret the climate change and OSL dating and radiocarbon dating were conducted to determine the age of the sediments. The age determinations revealed that the sediments were formed approximately from $10,000{\pm}100$ yr. BP to $4,370{\pm}50$ yr. BP (2,970 BC) The deposits were classified into five layers based on sediments color and texture, and the climate change of each layer has been interpreted. The general climate was found out to be warm. The study result illustrated that section I was the lowest layer and section V the highest among the five surveyed sections. One the other hand, relatively cold events were detected in the sections ranging from I and II to III in terms of temperature. In term of humidity, sections II and III are estimated to have been relatively dry. Sections IV and V were relatively warm and dry, and the section IV tends to be warmest of the entire sedimentary. In addition, there is a tendency that the total soil organic carbon shows relatively high values under the cooler and humid climatic condition.

Assessment of Leaching Potential for Pesticides Registered in Korea (국내등록농약의 용탈 가능성 평가)

  • Kim, Chan-Sub;Lee, Hee-Dong;Ihm, Yang-Bin;Kim, Jeong-Han;Im, Geon-Jae;Oh, Byung-Youl
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.4
    • /
    • pp.272-278
    • /
    • 2006
  • Movement of pesticides applied for crop protection to the non-target environmental compartments has increasingly concerned in recent. A special review on groundwater leaching potential of pesticides registered in Korea was done by using the data submitted on half-life and adsorption of the pesticides in/on soil. Groundwater ubiquity score(GUS) of pesticides as a leaching potential was calculated by using domestic trial data on pesticide half-life in paddy or upland soils and Koc data bases of Oregon State University (OSU), British Pesticide Safety Directorate and Sweden. Of total 382 pesticides reviewed, domestic half-lives of 107 pesticides were for paddy soil and 297 pesticides for upland soil. And total 317 Koc values were collected 148 pesticides from OSU DB and 276 pesticides from UK/Sweden DB. Very highly leachable pesticides were 18 and highly leachable pesticides were 44 among 313 pesticides classified by GUS.

The Effect of Mixed Cultivation Using Companion Plants on the Growth and Quality of Cherry Tomatoes

  • Lee, Byoung-Kwon;Yun, Hyung Kwon;Hong, In-Kyoung;Jung, Young-Bin;Lee, Sang-Mi
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.4
    • /
    • pp.311-327
    • /
    • 2021
  • Background and objective: Recent urban agriculture meets the needs of urban residents that safety and avoids using chemical pesticides. This study was conducted to identify various factors of companion planting affecting the growth of cherry tomatoes, which will promoting urban agriculture by improving socioeconomic satisfaction with gardening activities through quality. Methods: Four types of companion plants such as marigold, zinnia, spearmint and basil, that have a companion effect with growth, sugar content, and vitamin C content. We obtained the mean and standard deviation and tested the significance at a 95% confidence level (p < .05) with Duncan's multiple range test after one way ANOVA and MANOVA. Results: Compared to monoculture of cherry tomatoes, the plant growth in the treatment plots with companion planting showed a significant increase overall(p < .05), but there wasn't interaction effect among companion plants, planting ratio and type. As for the absorption of inorganic components, the companion planting showed better absorption than monoculture of cherry tomatoes, as favorable growth, and there was an interaction effect among the individual factors. The sugar content was higher than the standard sugar content of 5.8 brix in both the treatment plots at the control, and vitamin C content was higher than the control at 26.27mg/100g in all treatment plots, but there wasn't statistically significant difference. The soil pH in the cultivation plot ranges from 5.5 to 9.0 and was weakly alkaline in all treatment plots except zinnia, showing low contents of phosphoric acid, exchageable potassium, calcium and magnesium. Conclusion: This study was conducted to analyze various factors such as the growth of cherry tomatoes, contents of inorganic components, sugar content and vitamin C content of fruits, and soil analysis according to companion plants, planting type, and planting ratio. We will study sugar content by measuring the change in growth every phase of fruits.