• Title/Summary/Keyword: Soil and root parameters

Search Result 95, Processing Time 0.037 seconds

Response of Chickpea to Dual Inoculation with Rhizobium and Arbuscular Mycorrhiza, Nitrogen and Phosphorus

  • Solaiman, A.R.M.;Molla, M.N.;Hossain, M.D.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.6
    • /
    • pp.527-533
    • /
    • 2006
  • The response of chickpea (Cicer arietinum L.) to dual inoculation with Rhizobium (R) and arbuscular mycorrhiza (AM), nitrogen (N) and phosphorus (P) was studied on spore abundance and colonization of AM, nodulation, growth, yield attributes and yield. In all the parameters of the crop the performance of Rhizobium inoculant alone was superior to control. Dual inoculation with Rhizobium and AM in presence of P performed the best in recording number of spore $100g^{-1}$ rhizosphere soil and root colonization, number and dry weight of nodule, dry weights of shoot and root, number of pod $plant^{-1}$, number of seed $pod^{-1}$, seed and stover yields of chickpea. The maximum seed yield of 3.33 g $plant^{-1}$ was obtained by inoculating chickpea plants with Rhizobium and AM in association with P. From the view point of nodulation, growth, yield attributes and yield of chickpea, dual inoculation with Rhizobium and AM along with P was considered to be the balanced combination of nutrients for achieving the highest output from cultivation of chickpea in Shallow Red Brown Terrace Soil of Bangladesh.

Effect of Veterinary Antibiotics on the Growth of Lettuce

  • Kim, Hye Ji;Lee, Seung Hyun;Hong, Young Kyu;Kim, Sung Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.2
    • /
    • pp.119-127
    • /
    • 2018
  • Veterinary antibiotics (VAs) has been used to treat animal disease and to increase body weight. However, released VAs in the soil via spreading of compost can transport to plant and affect its growth. Main purpose of this research was i) to monitor VAs concentration in plant and ii) to evaluate inhibition effect of VAs residuals on the plant growth. Red lettuce (Lactuca sativa) was cultivated for 35 days in the pot soil spiked with 3 different concertation (0.05, 0.5, $5.0mg\;kg^{-1}$) of chlortetracycline (CTC) and sulfamethazine (SMZ). After 35 days of cultivation, concentration of CTC and SMZ in the plant was measured. Residual of CTC and SMZ was only quantified at the range of $0.007-0.008mg\;kg^{-1}$ and $0.006-0.017mg\;kg^{-1}$ in the leaf and root respectively when high concentration ($5.0mg\;kg^{-1}$) of antibiotic was spiked in the soil. Leaf length and root mass was statistically reduced when $0.05mg\;kg^{-1}$ of CTC was spiked in the soil while no statistical difference was observed for SMZ treatment. This result might indicated that high $K_{ow}$ and $K_d$ value are the main parameters for inhibiting plant growth. Antibiotics that has a high $K_{ow}$ causing hydrophobicity and easy to bioaccumulate in the lipid cell membrane. Also, antibiotics that has a high $K_d$ properties can be sorbed in the root causing growth inhibition of the plant. Overall, management of VAs should be conducted to minimize adverse effect of VAs in the ecosystem.

DAWAST Model Considering the Phreatic Evaporation in the Frozen Region (동결기 자유수면 지하수의 모관상승량을 고려한 DAWAST 모형)

  • 김태철;박철동
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.2
    • /
    • pp.78-84
    • /
    • 2001
  • The daily streamflow in the Yaluhe watershed located in the north-eastern part of China was simulated by DAWAST model and the water balance parameters of the model were calibrated by simplex method. Model verification tests were carried out. The range of root mean square error was 0.34∼1.50mm, that of percent error in volume was -16.9∼-62.0% and that of correlation coefficient was 0.727∼0.920. DAWAST model was revised to consider the phreatic evaporation from the ground water in the frozen soil by adjusting soil moisture content in the unsaturated layer at the end of the melting season. The results of estimation of the daily streamflow by the revised model were statistically improved, that is, the range of root mean square error was 0.31∼1.49mm, that of percent error in volume was -11.7∼-12.1%, and that of correlation coefficient was 0.810∼0.932. The accuracy of DAWAST model was improved and the applicability of DAWAST model was expanded to the frozen region.

  • PDF

Retrieval of surface parameters in tidal flats using radar backscattering model and multi-frequency SAR data

  • Choe, Byung-Hun;Kim, Duk-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.225-234
    • /
    • 2011
  • This study proposes an inversion algorithm to extract the surface parameters, such as surface roughness and soil moisture contents, using multi-frequency SAR data. The study areas include the tidal flats of Jebu Island and the reclaimed lands of Hwaong district on the western coasts of the Korean peninsula. SAR data of three frequencies were accordingly calibrated to provide precise backscattering coefficients through absolute radiometric calibration. The root mean square (RMS) height and the correlation length, which can describe the surface roughness, were extracted from the backscattering coefficients using the inversion of the Integral Equation Method (IEM). The IEM model was appropriately modified to accommodate the environmental conditions of tidal flats. Volumetric soil moisture was also simultaneously extracted from the dielectric constant using the empirical model, which define the relations between volumetric soil moistures and dielectric constants. The results obtained from the proposed algorithm were verified with the in-situ measurements, and we confirmed that multi-frequency SAR observations combined with the surface scattering model for tidal flats can be used to quantitatively retrieve the geophysical surface parameters in tidal flats.

Phytoremediation and Bioremediation of Land Contaminated by Hydrocarbons: Modeling and Field Applications

  • Sung, Kijune;Corapcioglu, M.Yavuz
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.18-21
    • /
    • 2002
  • Phytoremediation which uses plants to enhance the bioremediation through stimulation of microbial activity and root uptake, has been a topic of increasing interest. Mathematical model were developed that can be applied to various bioremediation methods in the unsaturated zone, especially phytoremediation, for simulating the fate and transport of contaminants under field conditions. A 2-year field study was conducted using 72 (1.5m long and 0.1 m diameter) column lysimeters with four treatments: Johnsongrass; wild rye grass; a rotation of Johnsongrass and wild rye grass; and unplanted fallow conditions. The developed model represented the fate and transport of contaminant both in vegetated and unplanted soils satisfactorily for field applications. Parameters related to the contaminant concentration in the water phase were the main parameters determining the contaminant fate in the vadose zone and indicated that the bioavailability can be the most important factor in the success of phytoremediation as well as bioremediation applications.

  • PDF

Rainfall-Runoff Simulation by Analytical Estimation of Soil Parameters (토양 매개변수의 해석적 산정을 통한 강우-유출 모의)

  • Jeong, Woo-Chang;Hwang, Ma-Ha;Song, Jai-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1870-1875
    • /
    • 2006
  • This study was carried out to investigate the applicability of SAC-SMA model with parameters which were derived from analytical relationships proposed by Koren etc. (2000), with various data of soil properties in a basin. The studied basin is Yongdam dam basin and the daily runoff with 2003-year hydrological data was simulated. Simulated runoff results were compared with those measured at three check points(Chuchun, Donhyang and Yongdam) and analyzed through the statistical techniques such as VE(Volume Error), RMSE(Root Mean Squared Error) and CORR(Correlation). As a result of analyses, the good agreement was obtained between simulated and measured results.

  • PDF

Use of Dactylaria brochopaga, a Predacious Fungus, for Managing Root-Knot Disease of Wheat (Triticum aestivum) Caused by Meloidogyne graminicola

  • Kumar, Niranjan;Singh, K.P.
    • Mycobiology
    • /
    • v.39 no.2
    • /
    • pp.113-117
    • /
    • 2011
  • A laboratory experiment was conducted to study the induction of constricting rings and test predation of Dactylaria brochopaga isolates against second stage juveniles (J2s) of Meloidogyne graminicola. Among the five fungal isolates, isolate D showed the greatest number of predatory rings and, consequently, trapped the maximum number of M. graminicola J2s in dual cultures. Another pot experiment was conducted to study the effect of D. brochopaga (isolate D) on the management of wheat root-knot disease. Applying a mass culture (10 g/pot) and a spore suspension of the fungus with and without cow dung manure to soil infested with 2,000 M. graminicola juveniles significantly improved plant height, root length, weights of shoots, roots, panicles and grains per hill compared to those in the control. Moreover, the fungus significantly reduced the number of root-knots, the number of egg masses, juveniles, and females per hill compared to those in the control. Bio-efficacy of the fungus was heightened when the mass culture and a spore suspensions were used in combination with cow dung manure to improve the plant growth parameters and reduce the number of root-knot and reproductive factors. Further investigations should be conducted to identify the impact of this fungus in the field.

Effect of Biofertilizers on Vegetative Growth of Okra

  • Ashrafuzzaman, M.;Nuruzzaman, M.;Islam, M.Zahurul;Islam, M.Rafiqul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.2
    • /
    • pp.73-80
    • /
    • 2003
  • An experiment was carried out at the Field Laboratory of the Department of Crop Botany, Bangladesh Agricultural University, Mymensingh from March to July, 2001 to investigate the effect of biofertilizers on morpho-physiological characters of okra. The experiment was laid out in a randomized complete block design with four replications. There were nine treatments such as $\textrm{T}_0$ (control), $\textrm{T}_1$ (Azotobacter biofertilizer), $\textrm{T}_2$ (Azospirillum biofertilizer), $\textrm{T}_3$ (Azotobacter+Azospirillum biofertilizers), $\textrm{T}_4$ (Azotobacter+Cowdung 5 ton $\textrm{ha}^{-1}$), $\textrm{T}_5$ (Azospirillum+Cowdung 5 ton $\textrm{ha}^{-1}$), $\textrm{T}_6$(Azotobacter+Azospirillum+Cowdung 5 ton $\textrm{ha}^{-1}$), $\textrm{T}_7$ (Cowdung 5 ton $\textrm{ha}^{-1}$) and $\textrm{T}_8$ (60% Nitrogen). The experimental results revealed that significant variations exist among the treatments regarding morphological characters e.g. plant height, number of leaves/plant, stem base diameter, tap root length, and physiological characters like, root dry weight, leaf area index and crop growth rate. Number of leaves/plant, stem base diameter, root length, root dry weight, leaf area index and crop growth rate were found higher in $\textrm{T}_4$, $\textrm{T}_5$, $\textrm{T}_6$ and $\textrm{T}_8$ than the others. In all the parameters, $\textrm{T}_8$ gave the similar result with biofertilizers in combination with cowdung treatments and $\textrm{T}_7$ showed identical with $\textrm{T}_0$ (control). Biofertilizer treatments had insignificant effect on 1000-seed weight(g). Experimental results mentioned above revealed that morpho-physioligical characters of okra could be modified by the application of biofertilizer+cowdung. However, biofertilizers+Cowdung treatments were comparable to $\textrm{T}_8$(60% Nitrogen) in this study. This suggests that $\textrm{T}_4$ or $\textrm{T}_6$ or $\textrm{T}_5$ were more benificial in environmentally friendly okra cultivation and may be used as an alternative of inorganic nitrogen by saving cost of production and sustaining productivity.

Growth responses of New Zealand Spinach [Tetragonia tetragonoides (Pall.) Kuntze] to different soil texture and salinity (신규 채소작물용 번행초의 토성 및 염도에 대한 생육 반응)

  • Kim, Sung-Ki;Kim, In-Kyung;Lee, Geung-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.4
    • /
    • pp.631-639
    • /
    • 2011
  • This research was conducted to investigate potential use of New Zealand spinach (Tetragonia tetragonoides) as a new vegetable crop which will be cultivating in salt-affected soils including reclaimed land. Traditionally New Zealand spinach has been studied to explore functional compound or salt removing potential. To cultivate the crop species in the salt-affected soil widely, it is essential to obtain salt and soil texture responses under the controlled environment. Fifty nine New Zealand spinach ecotypes native to Korean peninsula first collected over seashore areas, and primitive habitat soil environment was evaluated by analyzing soil chemical properties from 32 locations. Different textures of sandy, silt loam, and sandy loam soils were prepared from nearby sources of sea shore, upland and paddy soils, respectively. Target salinity levels of 16.0 dS/m, 27.5 dS/m, 39.9 dS/m, and 52.4 dS/m in electrical conductivity (ECw) were achieved by diluting of 25, 50, 75, 100% (v/v) sea water to tap water (control, 0.6 dS/m), respectively. Various measurements responding to soil texture and irrigation salinity included plant height, root length, fresh weight (FW), dry weight (DW), leaf parameters (leaf number, leaf length, leaf width), lateral branching, and inorganic ion content. was found to adapt to diverse habitats ranging various soil chemical properties including soil pH, organic matter, exchangeable bases, EC, and cation exchange capacity (CEC) in Korea. Responding to soil texture, New Zealand spinach grew better in silt loam and sandy loam soil than in sandy soil. Higher yield (FW and DW) seemed to be associated with branch number (r=0.99 and 0.99, respectively), followed by plant height (r=0.94 and 0.97, respectively) and leaf number (r=0.89 and 0.84, respectively). Plant height, FW, and DW of the New Zealand spinach accessions were decreased with increasing irrigation salinity, while root length was not significantly different compared to control. Based on previous report, more narrow spectrum of salinity range (up to 16 dS/m) needs to be further studied in order to obtain more accurate salinity responses of the plant. As expected, leaf Na content was increased significantly with increasing salinity, while K and Ca contents decreased. Growth responses to soil texture and irrigation salinity implied the potential use of New Zealand spinach as a leafy vegetable in salt-affected soil constructed with silt loam or sandy loam soils.

Biocontrol of Fusarium Crown and Root Rot and Promotion of Growth of Tomato by Paenibacillus Strains Isolated from Soil

  • Xu, Sheng Jun;Kim, Byung Sup
    • Mycobiology
    • /
    • v.42 no.2
    • /
    • pp.158-166
    • /
    • 2014
  • In this study, bacterial strains were isolated from soils from 30 locations of Samcheok, Gangwon province. Of the isolated strains, seven showed potential plant growth promoting and antagonistic activities. Based on cultural and morphological characterization, and 16S rRNA gene sequencing, these strains were identified as Paenibacillus species. All seven strains produced ammonia, cellulase, hydrocyanic acid, indole-3-acetic acid, protease, phosphatase, and siderophores. They also inhibited the mycelial growth of Fusarium oxysporum f. sp. radicis-lycopersici in vitro. The seven Paenibacillus strains enhanced a range of growth parameters in tomato plants under greenhouse conditions, in comparison with non-inoculated control plants. Notably, treatment of tomato plants with one identified strain, P. polymyxa SC09-21, resulted in 80.0% suppression of fusarium crown and root rot under greenhouse conditions. The plant growth promoting and antifungal activity of P. polymyxa SC09-21 identified in this study highlight its potential suitability as a bioinoculant.