• Title/Summary/Keyword: Soil Water

Search Result 8,167, Processing Time 0.032 seconds

Determination of Cyhalofop-butyl and its Metabolite in Water and Soil by Liquid Chromatography (LC를 이용한 물과 토양 중 Cyhalofop-butyl과 대사물질의 분석)

  • Hem, Lina;Choi, Jeong-Heui;Liu, Xue;Khay, Sathya;Shim, Jae-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.4
    • /
    • pp.315-322
    • /
    • 2008
  • In this study, a simple, effective, and sensitive method has been developed for the quantitative residue analysis of cyhalofop-butyl and its metabolite cyhalofop acid in water and soil when kept under laboratory conditions. The content of cyholofop-butyl and cyhalofop acid in water and soil was analyzed by first purifying the compounds through liquid-liquid extraction and partitioning followed by Silica gel (adsorption) chromatography. Upon the completion of the purification step the residual levels were monitored through high-performance liquid chromatography (HPLC) using a UV absorbance detector. The recoveries of cyhalofop-butyl from three replicates spiked at two different concentrations ranged from 82.5 to 100.0% and from 66.7 to 97.9% in water and soil, respectively. The limit of detection and minimum detection level of cyhalofop-butyl in water and soil was 0.02 ppm and 10 ng, respectively. The recoveries of cyhalofop acid ranged from 80.7 to 104.8% in water and from 76.9 to 98.1 % in soil. The limit of detection of cyhalofop acid was 0.005 ppm in water and 0.01 ppm in soil, while the minimum detection level was 2 ng both in water and soil. The half-live of cyhalofop-butyl was 4.14 and 6.6 days in water and soil, respectively. The method was successfully applied to evaluate cyhalofop-butyl residues in water and soil applied aj. 30% emulsion, oil in water (EW) product.

An Experimental Study for Relationship Between Gravity Water Content and Volumetric Water Content Through the Absorptance of Soils Particles (흙 입자의 흡수율을 고려한 체적함수비와 중량함수비의 관계에 관한 실험적 고찰)

  • Lee, Hyoungkyu;Lee, In
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.3
    • /
    • pp.63-67
    • /
    • 2011
  • Recently, the application of unsaturated-soil theory is concerned in practice. Most characteristics of unsaturated-soil is the relationship between volumetric water contents and matric suction. Usually the volume water contents is estimated by the relationship between gravity water contents and volume water contents because of the difficulty of measurement of volumetric water contents. In this case, the water exists in only void of soil, and the relationship between gravity water contents and volume water contents is calculated by only water in void, but in fact, the water exists in the particle of the soil. So the real volume water contents is different with calculated volume water contents derived by the relationship containing only void water. The object of this research is to revise the relationship between volume water contents and gravity water contents by using the absorptivity tests of the soil particle.

Determination of benzophenone in water, soil and sediment by gas chromatography/mass spectrometry (기체크로마토그래피/질량분석기에 의한 수질, 토양 및 저질 시료중의 benzophenone 분석법에 관한 연구)

  • Jeon, Hee Kyung;Choi, Hae Yeon;Ryu, Jae-Chun
    • Analytical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.147-153
    • /
    • 2005
  • Benzophenone (BP) which is one of endocrine disrupting chemicals is suspected to contaminate waters (river, lake and industrial drainage) and soils (ground soil and sediment). Analytical method for determination of BP in soil and water was developed by gas chromatography/mass spectrometry. Water sample (100 mL) was extracted with n-hexane, and soil (10 g) was extracted with methanol and n-hexane. Recovery for BP was >71.4% in water and 86.5-94.7% in soil with coefficient variation of less than 19.8%. Calibration curves showed a good linearity ($r^2$ >0.998). In water, soil and sediment collected at nation-wide sites, BP was detected at 5 sites among 43 water sites at the concentration range of 30-200 ng/L. No BP was found in the soil and sediment samples. It is suggested that this method will be useful to the determination of BP in the environmental matrices such as waters, soils and sediments in minute quantities.

Effects of Water Content and Temperature on Equilibrium Distribution of Organic Pollutants in Unsaturated Soil (토양내 유기독성물질의 평형분포에 미치는 토양수분과 온도의 영향)

  • Koo, Ja Kong;Shin, Hang Sik;Kim, Dong Ha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.3
    • /
    • pp.119-128
    • /
    • 1988
  • The purpose of this research is to quantify the effects of water content(0.3~1.255%) and temperature ($4{\sim}40^{\circ}C$) on the equilibrium distribution of toxic organic pollutant in unsaturated soil. The priority pollutants, Dichloromethane and 1, 1, 1-Trichloroethane were selected as toxic organic pollutants and the Korean decomposed granite soil as the experimental soil media. Two models were developed on the basis of shapes of soil water distribution in unsaturated soil and compared; complete surface coating(model I) vs. spot clustering (model II). From the experiment, a large decrease in the values of effective partition coefficient ($K_{eff}$) was observed as the water content increased. As the temperature increased, the $K_{eff}$ values decreased, and this effect was magnified at lower water contents. The values of $K_{eff}$ were correlated better with the estimated values using model II. Thus it was experimentally proved that the soil water tends to enclose the soil grain partly at lower water contents.

  • PDF

Excessive soil water stress responses of sesame (Sesamum indicum L.) and perilla (Perilla frutescens L.) cultivated from paddy fields with different topographic features

  • Ryu, Jongsoo;Baek, Inyeoul;Kwak, Kangsu;Han, Wonyoung;Bae, Jinwoo;Park, Jinki;Chun, Hyen Chung
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.749-760
    • /
    • 2018
  • In Korea, the largest agricultural lands are paddy fields which have poor infiltration and drainage properties. Recently, the Korean government has pursued cultivating upland crops in paddy fields to reduce overproduced rice in Korea. For this policy to succeed, it is critical to understand the topographic information of paddy fields and its effects on upland crops cultivated in the soils of paddy fields. The objective of this study was to characterize the growth properties of sesame and perilla from paddy fields with three soil topographic features and soil water effects which were induced by the topographic features of the sesame and perilla. The crops were planted in paddy fields located in Miryang, Gyeongnam with different topographies: mountain foot slope, local valley and alluvial plain. Soil water contents and groundwater levels were measured every hour during the growing season. The paddy field of the mountain foot slope was significantly effective in alleviating wet injury for the sesame and perilla in the paddy fields. The paddy field of the mountain foot slope had a decreased average soil water content and groundwater level during cultivation. Stress day index (SDI) from the alluvial plain paddy field had the greatest values from both crops and the smallest from the ones from the paddy field of the mountain foot slope. This result means that sesame and perilla had the smallest stress from the soil water content of the paddy field on the mountain foot slope and the greatest stress from the soil water content of the alluvial plain. It is important to consider the topography of paddy fields to reduce wet injury and to increase crop yields.

Surface soil moisture memory using stored precipitation fraction in the Korean peninsula (토양 내 저장 강수율을 활용한 국내 표층 토양수분 메모리 특성에 관한 연구)

  • Kim, Kiyoung;Lee, Seulchan;Lee, Yongjun;Yeon, Minho;Lee, Giha;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.2
    • /
    • pp.111-120
    • /
    • 2022
  • The concept of soil moisture memory was used as a method for quantifying the function of soil to control water flow, which evaluates the average residence time of precipitation. In order to characterize the soil moisture memory, a new measurement index called stored precipitation fraction (Fp(f)) was used by tracking the increments in soil moisture by the precipitation event. In this study, the temporal and spatial distribution of soil moisture memory was evaluated along with the slope and soil characteristics of the surface (0~5 cm) soil by using satellite- and model-based precipitation and soil moisture in the Korean peninsula, from 2019 to 2020. The spatial deviation of the soil moisture memory was large as the stored precipitation fraction in the soil decreased preferentially along the mountain range at the beginning (after 3 hours), and the deviation decreased overall after 24 hours. The stored precipitation fraction in the soil clearly decreased as the slope increased, and the effect of drainage of water in the soil according to the composition ratio of the soil particle size was also shown. In addition, average soil moisture contributed to the increase and decrease of hydraulic conductivity, and the rate of rainfall transfer to the depths affected the stored precipitation fraction. It is expected that the results of this study will greatly contribute in clarifying the relationship between soil moisture memory and surface characteristics (slope, soil characteristics) and understanding spatio-temporal variation of soil moisture.

A Study on Unsaturated Permeable Properties of the Soil-Bentonite Mixtures (Soil-Bentonite 혼합토의 불포화 투수특성 연구)

  • Kim Man-il
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.123-132
    • /
    • 2005
  • This study presents the results of a laboratory investigation performed to study physical properties of soil-bentonite mixtures through the vertical permeation test and dielectric measurement test using Frequency Domain Reflectometry system for the liner of waste landfill. For the laboratory experiments, geotechnical testing was conducted on pre-mixed soil-bentonite which is consisted of standard sand, weathered granite soil and bentonite for estimating physical parameters such as a volumetric water content, void ratio and dielectric constant. In experiment results, initial soil-bentonite mixing rate has an effect of change of volumetric water content. Also change of volumetric water content of a soil-bentonite mixture is clearly detected to measure a response of dielectric constant. In order to estimate an unsaturated permeable property of soil-bentonite mixtures, equations between volumetric water content and dielectric constant were derived from this study.

A study on the Measurement of Soil Water Concentration by Time Domain Reflectometry (TDR(Time Domain Reflectometry)을 이용한 토양수농도 측정에 관한 연구)

  • Park, Jae-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.2
    • /
    • pp.123-132
    • /
    • 1998
  • Monitoring solute transport has been known to be difficult especially for the unsaturated soil. The object of this study is to investigate the TDR application to monitoring solute concentration in the vadose zone. The TDR calibration test was conducted for soil samples with various water contents and concentrations. The voltage attenuation of electromagnetic wave of TDR was used to estimate the bulk electrical conductivity of a soil. The relationship between the bulk soil electrical conductivity and the solute concentration was assumed to be linear at a constant volumetric soil water content. In this study four proposed relationships were compared using data obtained from KCI solution at three different concentrations. Relationships given by Topp, Daltaon, Yanuka showed the linearity between the bulk soil electrical conductivity and the solute concentration, which were more pronounced than Zegelin's. The three relationships were found to be useful to measure the solute concentration in the vadose zone. In addition, TDR method was proven to be a viable technique in monitoring solute transport through unsaturated soils in transient flow condition.

  • PDF

Development of a Digital Soil Tensiometer using Porous Ceramic Cups (다공 세라믹 컵을 이용한 디지털 토양수분 장력계 개발)

  • Jung, In-Kyu;Chang, Young-Chang;Kim, Ki-Bok;Kim, Yong-Il;Chung, Sun-Ok
    • Journal of Biosystems Engineering
    • /
    • v.32 no.6
    • /
    • pp.448-454
    • /
    • 2007
  • This study was conducted to develop a 100 kPa soil tensiometer mainly consisted of a porous ceramic cup, water-holding tube, and a digital vacuum gauge, through theoretical design analysis and experimental performance evaluation. Major findings were as follows. 1. Theoretical analysis showed that air entry value of a porous media decreased as the maximum effective size of the pore increased, and the maximum diameter of the pores was $2.9\;{\mu}m$ for measuring up a 100 kPa of soil-water tension. 2. Property analysis of tensiometer porous cups supplied in Korean domestic market indicated that main components were $SiO_2$ and $Al_2O_3$ with a porosity range of $33.8{\sim}49.3%$. 3. The porous cup selected through sample fabrication and air-permeability tests showed weight ratios of 87% and 11% for $Al_2O_3$ and $SiO_2$. The analysis of SEM (scanning electron microscope) images showed that the sample was sintered at temperatures of about $1150^{\circ}C$, which consisted of pores with sizes of up to 25% of those for commercial porous cups. 4. The prototype soil tensiometer was fabricated using the developed porous cup and a digital vacuum gauge that could measure water tension with a pressure of 85 kPa in air tests. 5. In-soil tests of the prototype conducted during a period of 25-day drying showed that soil-water tension values measured with the prototype and commercial units were not significantly different, and soil-water characteristic curves could be established for different soils, confirming accuracy and stability of the prototype.