• Title/Summary/Keyword: Soil Washing

Search Result 310, Processing Time 0.022 seconds

A Study on the Artificially Soiled Fabric Containing Oil Soluble Dye as an Indicator (지용성 염료를 표지물로 사용한 인공오염포의 특성과 세척성에 판한 연구)

  • 박경원;김형균
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.21 no.1
    • /
    • pp.58-66
    • /
    • 1997
  • In order to evaluate the exact effect of detergency it is necessary both to measure the actual soil content by chemical analysis and to determine the degree of soil removal visually. Since it takes considerable time and effort to use both methods, usually one of the two methods is used. Many studies have been carried out through increasing the visibility of oily soil to evaluate detergency by measuring reflectance of fabrics. In this study Sudan Black B, an oil soluble dye was used as an indicator to increase the visibility of oily soil on cotton and polyester fabrics. The condition of artificially soiled fabrics and the method of evaluating detergency were investigated which represent the actual detergency of oily soil by measuring the reflectance only. Also the detergency of Sudan Black B and that of oily soil were compared with each other under various washing conditions, As a result, the K/S values converted from the reflectances showed a good correlation with the actual soil content. Linear relationship between K/S value and the actual soil content was obtained. The K/S values of washed fabrics were higher than those of unwashed fabrics which included same content of soil since the soil visibility changed during washing. But the difference was small when Sudan Black B was used. With the increase of soil content, detergency of cotton fabric decreased, but detergency of polyester fabric increased gradually. With regards to soiled fabrics, detergency of cotton fabric measured by K/S value was close to that of actual oily soil when Sudan black B was used as an indicator.

  • PDF

Desorption of Heavy Petroleum Oils and Heavy Metals from Soils by Flushing Agents (세정제에 의한 복합오염토양으로부터의 중질유 및 중금속 탈착 특성)

  • Yun, Sung Mi;Kim, Gil Ran;Lim, Hee Jun;Kim, Han S.
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.3
    • /
    • pp.94-103
    • /
    • 2014
  • In this study washing efficiency and desorption isotherms for heavy petroleum oil (HPO), Zn, and Pb bound to complex contaminated soils were examined using various soil flushing agents. Sodium dodecyl sulfate (SDS), methanol, ethylene diamine tetraacetic acid (EDTA), and citric acid were selected as soil flushing agents. 3% (w/v) and 4% SDS showed the highest removal efficiency for HPO, but the difference was not statistically significant (p > 0.05). Thus, 3% SDS was chosen as the best soil flushing agent for HPO. In the case of heavy metals, 0.1-M EDTA showed the highest removal efficiencies. But 0.05-M citric acid was selected due to its economic and eco-friendly strengths. The desorption isotherms obtained using Freundlich and Langmuir models indicated that the maximum desorption characteristics ($K_F$ and $Q_{max}$) of HPO with 4% SDS and 90% methanol and heavy metals with 0.1-M EDTA and 0.1-M citric acid, respectively, were markedly lower than in other cases. In addition, when 4% SDS and 90% methanol were used for HPO in the range of $C_e$ higher than 600 mg/L, and when 0.1M citric acid and 0.1M EDTA were used for Zn and Pb in the range of $C_e$ higher than 300 and 100 mg/L, respectively, the distribution constant converged to certain levels. Thus, constant values of $K_U$ and $K_L$ were determined. It was found that these constants represent the maximum desorption capacity and they can be used as distribution coefficients of desorption equilibrium for the flushing agents. The results of this study provided fundamental information for the selection of the best agents as well as for the process design and operation of soil washing/soil flushing of complex contaminated soils.

Ammonia and Hydrogen Sulfide Removal from Swine House Exhaust Air Using a Dip Injection Wet Scrubber

  • Shin, Myeongcheol;Lee, Seunghun;Wi, Jisoo;Ahn, Heekwon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.615-622
    • /
    • 2017
  • This study was conducted to evaluate the odor reduction efficacy of the dip injection wet scrubber (DIWS) using tap water as washing fluid. The $NH_3$ and $H_2S$ removal efficiency of 7 day batch operated DIWS was evaluated twice over a total of 14 days of experiment. The $NH_3$ removal efficiency ranged from 26 to 37%. The $H_2S$ removal efficiency was between 22 and 30%. The pH of the washing fluid maintained below 8 and the $NH_4{^+}$ concentration tended to keep constant around 350 ppm after 5 days of washing-fluid replacement. Therefore, the 5-day washing fluid replacement interval is more preferable than the 7-day interval. The $NH_4{^+}$ concentration and the electrical conductivity (EC) showed a high correlation. The EC measurement can be used as an alternative to conventional $NH_4{^+}$ concentration measurement method for real time monitoring of washing fluid condition.

Ex-situ Remediation of a Contaminated Soil of Fe Abandoned Mine using Organic Acid Extractants (유기산 추출에 의한 철 폐광산 오염토양의 복원)

  • 정의덕;강신원;백우현
    • Journal of Environmental Science International
    • /
    • v.9 no.1
    • /
    • pp.43-47
    • /
    • 2000
  • A study on the remediation of heavily for ion contaminated soils from abandoned iron mine was carried out, using ex-situ extraction process. Also, oxalic acid as a complex agent was evaluated as a function of concentration, reaction time and mixing ratio of washing agent in order to evaluate Fe removability of the soil contaminated from the abandoned iron mine. Oxalic acid showed a better extraction performance than 0.1N-HCl, i.e., the concentrations of Fe ion extracted from the abandoned mine for the former at uncontrolled pH and the latter were 1,750 ppm and 1,079 ppm, respectively. The optimum washing condition of oxalic acid was in the ratio of 1:5 and 1:10 between soil and acid solution during l hr reaction. The total concentrations of Fe ion by oxalic acid and EDTA at three repeated extraction, were 4,554 ppm and 864 ppm, respectively. The recovery of Fe ions from washing solution was achieved, forming hydroxide precipitation and metal sulfide under excess of calcium hydroxide and sodium sulfide. In addition, the amounted of sodium sulfide and calcium hydroxide for the optimal revovery of Fe were 15g/$\ell$ and 5g/$\ell$ from the oxalic acid complexes, respectively.

  • PDF

Effects of HCl and EDTA on Soil Washing to Remediate Lead-contaminated Soil in a Firing Range (사격장 납 오염토양 복원을 위한 토양세척시 HCl과 EDTA의 영향 연구)

  • Kim, Hyo-Sik;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.60-66
    • /
    • 2008
  • Laboratory soil washing experiments with HCl or EDTA were conducted to remediate lead-contaminated soil in a firing range. After lead bullets were removed by standard sieve #18 (1.0 mM), Pb concentrations were measured by EPA Method 3050B (9,443 mg/kg) and Korea Standard Test (4,803.5 mg/kg). The results of the batch test showed that the removal efficiency curve was logarithmic and approximately 90% of lead in soil was removed, when HCl was used. In case of EDTA, the removal efficiency increased proportionally to the concentration of EDTA, up to 98% lead removal with 0.1M EDTA. High mixing strength resulted in increase of removal efficiency and kinetics showed that the most lead was extracted in 10 min.

Extraction of Total Petroleum Hydracabons from Petroleum Oil-Contaminated Sandy Soil by Soil Washing (토양 세척법에 의한 유류오염 사질토양의 TPH 추출 효율 평가)

  • Lee, Cha-Dol;Yoo, Jong-Chan;Yang, Jung-Seok;Kong, Jun;Baek, Kitae
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.7
    • /
    • pp.18-24
    • /
    • 2013
  • The influences of various operating parameters on physico-chemical techniques were evaluated to remediate petroleum-contaminated sandy soil including S/L ratio, kinetic, and effect of soil particle size. The simple extraction using tap water removed only 20.6% of total petroleum hydrocarbon (TPH), and addition of NaOH enhanced the removal of TPH to approximately 30%. To meet the regulation levels, a surfactant, sodium dodecyl sulfate, was added, and the removal of TPH increased to 4 times. Probably, the carbonate minerals affected chemical aging and soprtion of petroleum, which inhibited the extraction of TPH. The soil with smaller particle size contained more TPH, and the removal of TPH was obstructed with smaller particle size. However, NaOH addition increased the removal of TPH in the smaller particles. The physico-chemical properties of soil influenced greatly the removal of petroleum even in sandy soil.

A Study on the Full-scale Soil Washing Process Improved by Multi-stage Continuous Desorption and Agitational Desorption Techniques to Remediate Petroleum-contaminated Soils (현장규모의 유류오염토양 세척공법에 다단연속탈착 및 교반탈착기법을 이용한 세척공정 성능향상에 관한 연구)

  • Seo, Yong-Sik;Choi, Sang-Il;Jang, Min
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.5
    • /
    • pp.81-87
    • /
    • 2008
  • In accompany with the transfer of US army bases, recent surveys reported serious contamination of soils by the release of petroleum from storage facilities and heavy metals accumulated in rifle-ranges. These problems have made an increased concerns of cleanup technology for contaminated soils. In this study, a full-scale soil washing process improved by multistage continuous desorption and agitational desorption techniques was examined for petroleum-contaminated soils obtained from three different remedial sites that contained 29.3, 16.6, and 7.8% of silt and clay, respectively. The initial concentrations of total petroleum hydrocarbon (TPH) were 5,183, 2,560, and 4,860 mg/kg for each soil. Pure water was applied to operate washing process, in which water used for washing process was recycled 100% for over 6 months. The results of full-scale washing tests showed that the TPH concentrations for soils (> 3.0 mm) were 50${\sim}$356 mg/kg (85.2${\sim}$98.2% removal rates), regardless of the contents of silt and clay from in A, B and C soil, when the soils were washed at 3.0 kg/$cm^2$ of injection pressure with the method of wet particle separation. Based on the initial TPH concentration, the TPH removal rates for each site were 85.2, 98.2 and 89.9%. For soils in the range of 3.0${\sim}$0.075 mm, the application of first-stage desorption technique as a physical method resulted 834, 1,110, and 1,460 mg/kg of TPH concentrations for each soil, also additional multi-stage continuous desorption reduced the TPH concentration to 330, 385, and 245 mg/kg that were equivalent to 92.4, 90.6, and 90.1% removal rates, respectively. The result of multi-stage continuous desorption for fine soil (0.075${\sim}$0.053 mm) were 791, 885, and 1,560 mg/kg, and additional agitation desorption showed 428, 440, and, 358 mg/kg of TPH concentrations. Compared with initial concentration, the removal rates were 92.0, 93.9 and 92.9%, respectively. These results implied we could apply strategic process of soil washing for varies types of contaminated soils to meet the regulatory limit of TPH.

Optimal washing course for sustainable laundering and care - Focusing on the washing course, detergency, fabric damage and detergent concentration - (지속가능한 의류관리를 위한 최적 세탁코스 연구 - 세탁코스, 세탁성, 섬유손상도, 세제농도를 중심으로 -)

  • Seong Phil Baek;Seeun Park;Myung-Ja Park
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.24 no.4
    • /
    • pp.1-9
    • /
    • 2022
  • The purpose of this research is to improve sustainable clothes care by comparing household washer's standard course and quick course. Detergency at each course was classified by laundry weight, detergent concentration, and soils. Also, fabric damage from each course was compared. Washing experiments were carried out using two types of washing machines and three types of detergents. Using the standard soiled fabrics of EMPA 108 set, detergency was compared by laundry weight, soil, and detergent concentration. Additionally, fabric damage was evaluated using the mechanical action of MA-40. The results of the research were as follows. First, a standard course, having more working time exhibited better detergency than a quick course. However, the detergency deviation under 6kg laundry weight was as low as 9.0%. Second, detergency by the type of soil was more effective in standard course than in a quick course, but hydrophilic protein soils had a small detergency deviation at 7.6%. Moreover, hydrophobic oil, complex, and particulate soils had a higher deviation at 19.7% Third, fabric damage was in proportion to operating time. Fourth, a quick course showed approximately 80% detergency regardless of the type of detergent. in the case of using 50% of the recommended allowance by the detergent manufacturer. In conclusion, reducing the operating washing time and detergent concentration is in accordance with increasing sustainability, in the case of washing with lightly soiled fabrics under 6kg of laundry weight.

The Biological Treatment of Soil Washing Water Contaminated with Heavy Metal (중금속오염 토양 세척수의 생물학적 처리)

  • Jeong, Jeong-Hwa;Seo, Pil-Soo;Kong, Sung-Ho;Seo, Seung-Won;Kim, Min-Kyoung;Lee, Jong-Yeol;Lee, Sang-Seob
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.11
    • /
    • pp.1222-1227
    • /
    • 2006
  • In this study, nine strains were isolated from heavy metal-contaminated soil in a mine. The high efficiency bacteria, JH1, to be able removal cadmium and copper, was selected by the screen test. JH1 was identified as Ralstonia eutropha by 16S rDNA analysis, fatty acid analysis, and its morphological and biochemical characteristics. After the cadmium-contaminated soil was washed with citric acid solution(pH 6, 10 mM), Ralstonia eutropha JH1 was inoculated in the soil washing water. In order to determine the optimal cell concentration for inoculation, cell concentrations were considered in 0.5, 1.0, 2.0, 4.0 g/L, respectively. The removal efficiencies for cadmium in each cell concentration of Ralstonia eutropha JH1 were 49.9, 84.4, 89.7% and 89.9% of 110 mg/L(Cd), after 5 days culture in soil washing water. When Ralstonia eutropha JH1 was inoculated in soil washing water containing each cadmium(110 mg/L) and copper(100 mg/L), each of them was removed completely during 6 days culture. The completely removing time for cadmium and copper in each low concentration, 10, 30 and 60 mg/L were 12, 18 and 48 hrs, respectively.

Optimum Washing Conditions of Artificially Soiled Cloths in a Drum-Type Washing Machine (드럼세탁기의 세척성 향상을 위한 인공 오염포의 세탁조건에 따른 세척성)

  • Chung, Hae-Won;Kim, Mi-Kyung;Kim, Hyun-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.11 s.158
    • /
    • pp.1589-1597
    • /
    • 2006
  • Nowadays, Korean consumers prefer drum-type washing machines to pulsator-type washers. Washing is a complex process involving the interaction of numerous physical and chemical influences. The main factors in the washing operations are the washing chemistry of the detergent along with the mechanical input, the wash temperature, and the time provided by the washing machine. Heavy-duty detergents that are used in drum-type washing machines contain different components from those used in vertical-axis washing machines. The bath ratio and the mechanical actions to which laundry is subjected are different between the drum-type and the vertical-axis washing machines. In this study we examined the effects of wash temperature, wash time, detergent concentration, and revolution speed on the removal of soils from artificially soiled cloths in a drum-type washing machine with heavy-duty commercial detergent. We used multiple regression analyses to find the relative importance of the factors and the optimum washing conditions. The results of these experiments showed that the washing temperature was the most important factor in the effective removal of most soils. This was followed by the washing time, the detergent concentration, and finally the revolution speed. In this study it was found that superfluous amounts of detergent did not sufficiently increase the soil removal rate. Koreans who are used to washing with cold water should increase the wash time to launder more efficiently.