• 제목/요약/키워드: Soil Temperature and Humidity

검색결과 253건 처리시간 0.022초

Exploring Environmental Factors Affecting Strawberry Yield Using Pattern Recognition Techniques

  • 조완현;박유하;나명환;최돈우
    • 인터넷정보학회논문지
    • /
    • 제20권1호
    • /
    • pp.39-46
    • /
    • 2019
  • This paper investigates the importance of various environmental factors that have a strong influence on strawberry yields grown in greenhouse using the pattern recognition methods. The environmental factors influencing the production of strawberries were six factors such as average inside temperature, average inside humidity, average $CO_2$ level, average soil temperature, cumulative solar radiation, and average illumination. The results of analyzing the observed data using Dynamic Time Warping (DTW) showed that the most significant factor influencing the strawberry production was average soil temperature, average inside humidity, and cumulative solar radiation. Second, the results of analyzing the observed data using Multidimensional Scaling (MDS) showed that the most influential factors on the strawberry yields, such as average $CO_2$ level, average inside humidity, and average illumination were differently given for each farms. However, these results are based on the distance in 3D space and can be deduced from the fact that there is not a large difference between these distances. Therefore, in order to increase the harvest of strawberries cultivated in the farms, it is necessary to manage the environmental factors such as thoroughly controlling the humidity and maintaining the concentration of $CO_2$ constantly by ventilation of the greenhouse.

Assessment of causality between climate variables and production for whole crop maize using structural equation modeling

  • Kim, Moonju;Sung, Kyungil
    • Journal of Animal Science and Technology
    • /
    • 제63권2호
    • /
    • pp.339-353
    • /
    • 2021
  • This study aimed to assess the causality of different climate variables on the production of whole crop maize (Zea mays L.; WCM) in the central inland region of the Korea. Furthermore, the effect of these climate variables was also determined by looking at direct and indirect pathways during the stages before and after silking. The WCM metadata (n = 640) were collected from the Rural Development Administration's reports of new variety adaptability from 1985-2011 (27 years). The climate data was collected based on year and location from the Korean Meteorology Administration's weather information system. Causality, in this study, was defined by various cause-and-effect relationships between climatic factors, such as temperature, rainfall amount, sunshine duration, wind speed and relative humidity in the seeding to silking stage and the silking to harvesting stage. All climate variables except wind speed were different before and after the silking stage, which indicates the silking occurred during the period when the Korean season changed from spring to summer. Therefore, the structure of causality was constructed by taking account of the climate variables that were divided by the silking stage. In particular, the indirect effect of rainfall through the appropriate temperature range was different before and after the silking stage. The damage caused by heat-humidity was having effect before the silking stage while the damage caused by night-heat was not affecting WCM production. There was a large variation in soil surface temperature and rainfall before and after the silking stage. Over 350 mm of rainfall affected dry matter yield (DMY) when soil surface temperatures were less than 22℃ before the silking stage. Over 900 mm of rainfall also affected DMY when soil surface temperatures were over 27℃ after the silking stage. For the longitudinal effects of soil surface temperature and rainfall amount, less than 22℃ soil surface temperature and over 300 mm of rainfall before the silking stage affected yield through over 26℃ soil surface temperature and less than 900 mm rainfall after the silking stage, respectively.

인공광을 이용한 접목표 활착촉진 시스템의 시작품 설계 - 활착촉진 시스템 내의 기온과 상대습도 분포에 미치는 기류속도의 효과 (Design of a Prototype System for Graft-Taking Enhancement of Grafted Seedlings Using Artificial Lighting - Effect of air current speed on the distribution of air temperature and relative humidity in a graft-taking enhancement system)

  • 김용현
    • Journal of Biosystems Engineering
    • /
    • 제25권3호
    • /
    • pp.213-220
    • /
    • 2000
  • Grafting of fruit-bearing vegetables has been widely used to increase the resistance to soil-borne diseases, to increase the tolerance to low temperature or to soil salinity, to increase the plant vigor, and to extend the duration of economic harvest time. After grafting, it is important to control the environment around grafted seedlings for the robust joining of a scion and rootstock. Usually the shading materials and plastic films are used to keep the high relative humidity and low light intensity in greenhouse or tunnel. It is quite difficult to optimally control the environment for healing and acclimation of grafted seedlings under natural light. So the farmers or growers rely on their experience for the production of grafted seedling with high quality. If artificial light is used as a lighting source for graft-taking of grafted seedlings, the light intensity and photoperiod can be easily controlled. The purpose of this study was to develop a prototype system for the graft-taking enhancement of grafted seedlings using artificial lighting and to investigate the effect of air current speed on the distribution of air temperature and relative humidity in a graft-taking enhancement system. A prototype graft-taking system was consisted by polyurethane panels, air-conditioning unit, system controller and lighting unit. Three band fluorescent lamps (FL20SEX-D/18, Kumho Electric, Inc.) were used as a lighting source. Anemometer (Climomaster 6521, KANOMAX), T-type thermocouples and humidity sensors (CHS-UPS, TDK) were used to measure the air current speed, air temperature and relative humidity in a graft-taking system. In this system, air flow acted as a driving force for the diffusion of heat and water vapor. Air current speed, air temperature and relative humidity controlled by a programmable logic controller (UP750, Yokogawa Electric Co) and an inverter (MOSCON-G3, SAMSUNG) had an even distribution. Distribution of air temperature and relative humidity in a graft-taking enhancement system was fairly affected by air current speed. Air current speed higher than 0.1m/s was required to obtain the even distribution of environmental factors in this system. At low air current speed of 0.1m/s, the evapotranspiration rate of grafted seedlings would be suppressed and thus graft-taking would be enhanced. This system could be used to investigate the effects of air temperature, relative humidity, air current speed and light intensity on the evaportranspiration rate of grafted seedlings.

  • PDF

표고시설재배사내 시·공간적인 온·습도변화 (Spatiotemporal Changes of Temperature and Humidity in Lentinula edodes Cultivation Sheds)

  • 류성렬;구창덕
    • 한국산림과학회지
    • /
    • 제94권6호
    • /
    • pp.468-475
    • /
    • 2005
  • 표고재배사내 시공간적인 온습도 변화를 이해하기 위하여 표고시설재배사내 HOBO H8시리즈 센서를 이용하여 온 습도를 측정하였다. 2003년 10월부터 2004년 10월 까지 얻어진 결과는 다음과 같다. 1. 수평적 온도변화는 재배사내부의 가장자리보다 중앙부분이 더 작았다. 한편 상대습도변화 는 재배사내부의 가장자리보다 중앙부분에서 3%정도가 크게 나타났다. 2. 수직적 온도변화는 온도가 올라갈 때 하단 보다 상단에서 컷으며, 온도가 떨어질 때 하단 보다 상단에서 작았다. 그래서 토양표면에 가까울수록 온도는 작은 변동폭을 보였다. 수직적 상대습도변화는 온도가 올라갈 때 하단보다 상단에서 작았으며, 온도가 떨어질 때 는 하단보다 상단에서 컷다. 결국 온 습도는 재배사내에서 반대경향으로 나타났다. 3. 원목재배사내에서 최저온도는 4월말까지 영하의 온도로 유지되었으며, 최저온도는 5월초 에 비로서 영상온도를 회복하였다. 한편 계절별로 볼때 겨울이 온도변화가 가장 심했으며, 일중 $30^{\circ}C$를 나타냈다. 반면 최저상대습도로서 4월, 5월, 6월에 20%이하를 보였으며, 그 이 후 40%이상을 회복하였다.

하절기 한지형 잔디 재배 시 침수 및 고온으로 인한 잔디의 생육 불량 현상 (Effect of High-Humidity and High Temperature at Kentucky Bluegrass Growth in Summer)

  • 이정호;최준용;이성호;주영규
    • 아시안잔디학회지
    • /
    • 제22권2호
    • /
    • pp.133-140
    • /
    • 2008
  • 한지형 잔디는 하절기 온도가 $30^{\circ}C$ 이상까지 올라가는 우리나라에서 뿌리와 줄기의 성장이 급격히 저하되고 심하면 고사하게 된다. 기온의 상승으로 인한 지온 상승은 잔디뿌리에 스트레스가 되며 그 스트레스는 호르몬의 불균형적인 형성으로 지상부 생장 및 광합성, 증산작용 등의 여러 매카니즘에 많은 영향을 미치게 된다. 이러한 문제를 해결하기 위해 토양내 수분함량을 조절하기도 하고 유기물 함량을 조절하여 지온의 상승을 제한함으로서 잔디의 생육부진을 해소하는 연구도 수행되었다. 본 실험은 토양 수분의 변화에 따른 토양 온도의 변화 양상을 분석하고, 잔디 재배지에서의 토양 깊이와 수분 함량에 따른 열 전도 기작과 열 환경 변화에 따른 직접적인 잔디 생육(생산량, 녹도, 건조피해, 고온피해 등)에 미치는 영향을 연구하였다. 공시 초종으로 Kentucky bluegrass(Poa pratensis L.)를 선정하였고 각각의 실험구는 수분함량에 따라 25%, 33%, 40%의 3가지로 구분하여 처리하였다. 토양온도측정 센서를 각 실험구에 깊이 12cm 지점과 2cm 지점에 각각 2개씩 즉, 한 실험구당 4개의 토양온도측정 센서를 설치하여 매 5분마다 온도변화를 측정하였다. 수분함량에 따른 온도변화는 수분함량이 33% 일 때 가장 낮게 측정되었다. 잔디의 생육상태를 비교하여 볼 때 수분 함량이 33% 일 때 생육이 가장 양호하였으며 40% 일 때 가장 생육이 불량하였다. 하절기 고온 환경에서 한지형 잔디인 Kentucky bluegrass의 생육은 토양 수분함량에 따라 큰 영향을 받지만, 장마기에 잔디가 침수된 환경에서 토양 수분 함량을 최소한 33%까지 감소시켰을 경우에는 잔디 생육에 큰 영향을 받지 않을 것으로 사료된다.

A Study on IoT based Real-Time Plants Growth Monitoring for Smart Garden

  • Song, Mi-Hwa
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권1호
    • /
    • pp.130-136
    • /
    • 2020
  • There are many problems that occur currently in agriculture industries. The problems such as unexpected of changing weather condition, lack of labor, dry soil were some of the reasons that may cause the growth of the plants. Condition of the weather in local area is inconsistent due to the global warming effect thus affecting the production of the crops. Furthermore, the loss of farm labor to urban manufacturing jobs is also the problem in this industry. Besides, the condition for the plant like air humidity, air temperature, air quality index, and soil moisture are not being recorded automatically which is more reason for the need of implementation system to monitor the data for future research and development of agriculture industry. As of this, we aim to provide a solution by developing IoT-based platform along with the irrigation for increasing crop quality and productivity in agriculture field. We aim to develop a smart garden system environment which the system is able to auto-monitoring the humidity and temperature of surroundings, air quality and soil moisture. The system also has the capability of automating the irrigation process by analyzing the moisture of soil and the climate condition (like raining). Besides, we aim to develop user-friendly system interface to monitor the data collected from the respective sensor. We adopt an open source hardware to implementation and evaluate this research.

유비쿼터스 영농일지 시스템의 구현 (Implementation of System for a Ubiquitous Farming-diary)

  • 이용웅;조종식;주종길;신창선;여현;이종현;신한호;염창열
    • 한국농공학회논문집
    • /
    • 제52권2호
    • /
    • pp.35-42
    • /
    • 2010
  • In this paper, we propose a ubiquitous Farming Diary System which can support the easy and reliable recording of a farming diary for the certificate on environment-friendly agricultural products by using the USN(Ubiquitous Sensor Network) technologies. By using growth-related data, the system can also control farming facilities remotely and automatically. To achieve this goal, the UFDS(Ubiquitous Farming Diary System) is consisted with 3 layers. The first 'physical layer' can collect data from sensors, cameras and facilities then controls the growth environment based on the analyzed information. The second 'Middle layer' can process and store the data from 'physical layer' to sensor manager, image manager, control manager and diary manager separately. The third 'application layer' can provide growth-related services to users through various applications. The UFDS can recording grow history information automatically and Easily. Besides, the system can make an accurate and reliable farming diary with multimedia information such as motion and sound. Furthermore, environmental information such as temperature, humidity, luminance and soil conditions (soil temperature, soil humidity, soil EC) can be monitored in real-time and the facilities managed in remote sites.

A Forecast Model for the First Occurrence of Phytophthora Blight on Chili Pepper after Overwintering

  • Do, Ki-Seok;Kang, Wee-Soo;Park, Eun-Woo
    • The Plant Pathology Journal
    • /
    • 제28권2호
    • /
    • pp.172-184
    • /
    • 2012
  • An infection risk model for Phytophthora blight on chili pepper was developed to estimate the first date of disease occurrence in the field. The model consisted of three parts including estimation of zoosporangium formation, soil water content, and amount of active inoculum in soil. Daily weather data on air temperature, relative humidity and rainfall, and the soil texture data of local areas were used to estimate infection risk level that was quantified as the accumulated amount of active inoculum during the prior three days. Based on the analysis on 190 sets of weather and disease data, it was found that the threshold infection risk of 224 could be an appropriate criterion for determining the primary infection date. The 95% confidence interval for the difference between the estimated date of primary infection and the observed date of first disease occurrence was $8{\pm}3$ days. In the model validation tests, the observed dates of first disease occurrence were within the 95% confidence intervals of the estimated dates in the five out of six cases. The sensitivity analyses suggested that the model was more responsive to temperature and soil texture than relative humidity, rainfall, and transplanting date. The infection risk model could be implemented in practice to control Phytophthora blight in chili pepper fields.

전작물의 필요수량 결정을 위한 연구 (A Study to Determine the Consumptive Use of Water for Upland Crops)

  • 김철회;유시창;이근후;서원명
    • 한국농공학회지
    • /
    • 제22권3호
    • /
    • pp.37-45
    • /
    • 1980
  • This study was carried out to investigate the consumptive use of water for red peppers and soy beans. The correlation between the soil moisture contents and the selected meteorological factors during the growing season was analyzed. Characteristics of the drought at Jinju, Yeosu, Gwangju, and Mokpo area were figured out in view of frequency analysis. The results obtained from this study could be used as a reasonable criteria for the estimation of the duty of water in the design of upland irrigation systems. Obtained results are summarized as follows: 1. Red peppers were grown at the three levels of soil moisture contents; 75 percent, 50 percent, and 25 percent, respectively. The red pepper grown at the 75 percent of soil moisture content showed the highest yield. The total evapotranspiration during the growing season from red peppers was 471. lmm, which was 86.6mm less than the pan evaporation. 2. The soy bean grown at 75 percent soil moisture content showed the highest yield, although there was no signicant difference in yields among treatments. The total evapotranspiration during the growing season from the soy bean was 342.8 mm, which was 119.2mm less than the pan evaporation. 3. Coefficients of consumptive use(k) and meteorological data are shown on Table-9. 4. The significant correlations between the evapotranspiration and the humidity and daily temperature range were observed. Results are shown on Table-11.. Evaporanspiration can be easily estimated from the humidity and daily temperature range by using the equation...... (1) Ept=4.808-0.041H+0.207T.......(1) where, Ept; evapotranspiration(mm/day) H ; humidity(%) T ; daily temperature range ($^{\circ}C$) 5. The variations of soil moisture content during the growing season at the soil depth of 5cm, 15cm, and 45cm are shown on Fig. 4~9. The results of the correlation analysis between the evapotranspiration from the crops and the soil moisture content are shown on Table-12. The evapotranspiration can be estimated from soil moisture content at the different depth of the soil by using the equation....... (2). Ept = 3.433 - 0. 364M1 +0. 359M$_2$- 0. 055M$_3$....... (2) where, Ept; evapotranspiration (mm/day) M1 soil moisture meter reading at 5cm depth M$_2$; " 15cm " M$_2$; " 40cm " 6. The estimated probab]e successive dry days in selected areas are shown on Table 13. Gumbel-Chow method was used to calculate the probable successive dry days. Further investigation are required to obtain the more detailed and reliable results.

  • PDF

무선 통신 기반 스마트 농장 온습도 제어 방법론에 대한 연구 (A Study on the Temperature and Humidity Control Methodology of Smart Farm ased on Wireless Communication Network)

  • 박세현;오성현;이상민;맹준석;고윤석
    • 한국전자통신학회논문지
    • /
    • 제13권4호
    • /
    • pp.851-858
    • /
    • 2018
  • 본 논문에서는 스마트 농장의 경제성과 생산성을 제고하기 위한 스마트 농장을 위한 온습도 제어 알고리즘을 제안하였다. 스마트 농장의 기본 조건을 분석하고, 이를 기반으로 무선통신을 기반으로 하는 스마트 농장내의 센서 및 제어대상간 정보교환 시스템을 설계하였으며, 스마트 농장내의 온도, 습도 그리고 토양습도가 식물 성장에 적합하게 설정된 기준 값을 추종하도록 온습도 제어 알고리즘을 개발하였다. 제안된 설계 방법론 및 제어 알고리즘의 유효성을 검증하기 위해서 2.4GHz 무선통신 기반 소규모 스마트 농장의 프로토타입을 제작하였으며, 온습도 실험을 통해서 그들의 유효성을 확인하였다.