Physical conditions play vital role on the mechanical properties of frozen soil, especially for the temperature and moisture content of frozen soil. Subsequently, they influence the subsidence and stress law of permafrost layer. Taking Jiangcang No. 1 Coal Mine as engineering background, combined with laboratory experiment, field measurements and empirical formula to obtain the mechanical parameters of frozen soil, the thick plate mechanical model of permafrost was established to evaluate the safety of permafrost roof. At the same time, $FLAC^{3D}$ was used to study the influence of temperature and moisture content on the deformation and stress law of frozen soil layer. The results show that the failure tensile stress of frozen soil is larger than the maximum tensile stress of permafrost roof occurring in the process of mining. It indicates that the permafrost roof cannot collapse under the conditions of moisture content in the range from 20% to 27% as well as temperature in the range from $-35^{\circ}C$ to $-15^{\circ}C$. Moreover, the maximum subsidence of the upper and lower boundary of the overlying permafrost layer decreases with the increase of moisture content in the range of 15% to 27% or the decrease of temperature in the range of $-35^{\circ}C$ to $-15^{\circ}C$ if the temperature or moisture content keeps consistent with $-25^{\circ}C$ or 20%, respectively.
여름철 고온 다습한 우리나라 기온에서 토양 온도와 수분은 잔디의 생리학적 변화를 초래하며, 특히 한지형 잔디생육은 우리나라 여름철 기후의 특이성에 많은 영향을 받는다. 본 실험은 크리핑 벤트그래스(Agrostispalustris Huds.)를 이용하여 고온의 조건에서 각기 다른 토양 수분함량 조건에서의 한지형 잔디생육을 관찰하였다. 구체적인 실험 방법으로는 수분함량과 온도에 따른 bentgrass의 생육 및 생리적 스트레스 반응을 평가하였다. 모의 USGA(United State of Golf Association) 그린 조건에서의 토양 온도 및 열 특성 실험 결과 수분이 거의 없는 건조 상태에서의 토양 온도는 $34^{\circ}C$로 발열 했을 때 토양 표면 온도가 $80^{\circ}C$까지 올라가는 것을 알 수 있었다. 반면, 과수분 조건에서 $34^{\circ}C$ 발열을 했을 때에는 건조 조건에 비해 상대적으로 $10^{\circ}C$가 낮은 것을 알 수 있었다. 실험 포장에서의 온도와 수분에 따른 열 특성 변화는 관수시기와 무관하게 처리구 모두에서 관수 후에 열전도도(thermal conductivity), 열 확산성(thermal diffusivity), 및 토양 온도가 증가하였다. 이는 수분이 공기에 비해 상대적으로 높은 열전도도를 갖기 때문으로 사료된다. 또한, 본 실험에서 관수 초기에는 과수분 조건에 비해 수분 결핍 조건에서 토양 온도의 증가를 보였으며, 시간이 지남에 따라 과수분 조건에서 더 높은 토양 온도의 증가를 확인하였다. 즉, 토양 온도는 과수분 조건에서 열전도에 의해 높아져 잔디의 생육에 영향을 미친다. 이는 잔디 표면부 온도가 높은 시각대의 과도한 관수는 여름철 잔디의 생육에 부정적 영향을 미치며, 소나기 등에 의한 일시 침수 시 지반배수의 불량은 잔디 생육에 치명적인 요인이 될 수 있다는 것을 의미한다.
This study was to obtain basic information needed to develop the effective weed control method for the production of less polluted agricultural products by inducing viability loss of weed seeds in soil with infrared irradiation. Ceramic plates were heated by LPG with the aid of forced air and the infrared produced from plates was used as the heat source for heating soil. The soil heated in this study was sandy loam with four levels of moisture contents (0.5, 5.1, 9.1, 15.0% wb). The temperature distribution was measured at various soil depths when soil was irradiated with infrared for different irradiation time (30, 60, 90 sec). The soil depths with duration time of minimum 3 minutes over $80^circ C$, temperature inducing viability loss of weed seeds, were investigated. When the moisture content of soil was 0.5% and 5.1% wb, the soil depths which can induce viability loss of weed seeds was greatly increased with increasing irradiation time. When 30 seconds of irradiation time was applied on soil with moisture content of 9.1% or 15.0% wb, any depths of soil tested in this study was not reached to the temperature of 8$0^{\circ}C$. Generally, the soil depth being needed for viability loss of weed seeds was decreased with increasing moisture content of soil.
In consideration of the mesoscopic structure of soil-rock mixtures in which the rock aggregates are wrapped by soil at normal temperatures, a two-layer embedded model of single-inclusion composite material was built to calculate the shear modulus of soil-rock mixtures. At a freezing temperature, an interface ice interlayer was placed between the soil and rock interface in the mesoscopic structure of the soil-rock mixtures. Considering that, a three-layer embedded model of double-inclusion composite materials and a multi-step multiphase micromechanics model were then built to calculate the shear modulus of the frozen soil-rock mixtures. Given the effect of pore structure of soil-rock mixtures at normal temperatures, its shear modulus was also calculated by using of the three-layer embedded model. Experimental comparison showed that compared with the two-layer embedded model, the effect predicted by the three-layer embedded model of the soil-rock mixtures was better. The shear modulus of the soil-rock mixtures gradually increased with the increase in rock regardless of temperature, and the increment rate of the shear modulus increased rapidly particularly when the rock content ranged from 50% to 70%. The shear modulus of the frozen soil-rock mixtures was nearly 3.7 times higher than that of the soil-rock mixtures at a normal temperature.
The headspace method has been acknowledged as a cost-effective and convenient method to analyze volatile organic compounds(VOCs) in soil. The headspace analysis is based on equilibrium partitioning of VOCs among water, air and soil in a closed system. However, the headspace method cannot be applied to soils where most of the VOCs remain sorbed even at high temperature. In this study, it was investigated how the sorption characteristics of VOCs varied with soil with different organic carbon contents and temperature. This study showed that all the VOCs were volatilized, not sorved, only in the soil with 5% organic carbon at 45$^{\circ}C$ or higher. Some fraction of VOCs remained in soil with 8% organic carbon at $65^{\circ}C$ of higher. Most of the VOCs remained sorbed in soil with 12% organic content even at 95$^{\circ}C$. This result suggested that the headspace method can be applied only to soils with little organic carbon content (less than 5%). In this case, 45$^{\circ}C$ seems to be high enough to volatilize all the VOCs from soil. Large particles still showed a significant sorption capacity for VOCs from soil. Large Particles still showed a significant sorption capacity for VOCs despite of their low level of organic carbon content. It was also shown that the organic carbon sorption coefficients (Koc) of VOCs varied with soils with different organic carbon content. This suggests that not only the organic matter content of soil but also the property of the organic matter in soil influence the sorption of VOCs to soil.
Understanding N mineralization dynamics in soil is essential for efficient nutrient management. An anaerobic incubation experiment was conducted to examine N mineralization potential and N mineralization rate of the organic amendments with different C:N ratio in paddy soil. Inorganic N in the soil sample was measured periodically under three temperature conditions ($20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$) for 90 days. N mineralization was accelerated as the temperature rises by approximately $10%^{\circ}C^{-1}$ in average. Negative correlation ($R^2=0.707$) was observed between soil inorganic N and C:N ratio, while total organic carbon extract ($R^2=0.947$) and microbial biomass C ($R^2=0.824$) in the soil were positively related to C:N ratio. Single exponential model was applied for quantitative evaluation of N mineralization process. Model parameter for N mineralization rate, k, increased in proportion to temperature. N mineralization potential, $N_p$, was very different depending on C:N ratio of organic input. $N_p$ value decreased as C:N ratio increased, ranged from $74.3mg\;kg^{-1}$ in a low C:N ratio (12.0 in hairy vetch) to $15.1mg\;kg^{-1}$ in a high C:N ratio (78.2 in rice straw). This result indicated that the amount of inorganic N available for crop uptake can be predicted by temperature and C:N ratio of organic amendment. Consequently, it is suggested that the amount of organic fertilizer application in paddy soil would be determined based on temperature observations and C:N ratio, which represent the decomposition characteristics of organic amendments.
In this study, we analyze changes in soil heat flux and air temperature in August (summer) and January (winter) according to net radiation, at a mud flat in Hampyeong Bay. Net radiation was observed as $-84.2{\sim}696.2W/m^2$ in August and $-79.4{\sim}352.5W/m^2$ in January. Soil heat flux was observed as $-80.7{\sim}139.5Wm^{-2}$ in August and $-49.09{\sim}137W/m^2$ in January. Air temperature was observed as $24.2{\sim}32.9^{\circ}C$ in August and $-1.5{\sim}11.1^{\circ}C$ in January. The rate of soil heat flux for net radiation ($H_G/R_N$) was 0.17 in August and 0.34 in January. Because the seasonal fluctuation in net radiation was bigger than the soil heat flux, net radiation in August was bigger than in January. We estimated a linear regression function to analyze variations in soil heat flux and air temperature by net radiation. The linear regression function and coefficient of determination for the soil heat flux by net radiation was y=0.19x-7.94, 0.51 in August, and y=0.39x-11.69, 0.81 in January. The time lag of the soil heat flux by net radiation was estimated to be within ten minutes in August 2012 and January 2013. The time lag of air temperature by net radiation was estimated at 160 minutes in August, and 190 minutes in January.
This study is to develop a model to predict the soil temperature variation in Korea Institute of Energy Research using its thermal properties, such as thermal conductivity and diffusivity. Soil depth temperature variation is very important in the design of a proper Ground Source Heat Pump (GSHP) system. This is because the size of the borehole depends on the soil temperature distribution, and this can decrease GSHP system cost. If the thermal diffusivity and thermal conductivity are known, the soil temperature can be predicted by either the Krarti equation or the Spitler equation. Then a comparison with the Krarti equation and Spitler equation data with the real measured data can be performed. Also, the thermal properties can be reasonably approximated by performing a fit of the Krarti and Spitler equations with measured temperature data. This was done and, as a result, the Krarti equation and Spitler equation predicted values very close to the measured data. Although there is about a $0.5^{\circ}C$ difference between the deep subsurface prediction (16m - 60m), with this equation, were expected to have model this Non-Homogeneous Soil Temperature phenomenon properly. So, it has been shown that a prediction of non-homogeneous soil temperature variation influenced by solar radiation can be achieved with a model.
Kim, Jeong-Seob;Lim, Seok-Hwa;Joo, Seung Jin;Shim, Jae-Kuk;Yang, Keum-Chul
Journal of Ecology and Environment
/
제37권3호
/
pp.113-122
/
2014
The purpose of this study is to compare soil $CO_2$ efflux between burned and unburned sites dominated by Pinus densiflora forest in the Samcheok area where a big forest fire broke out along the east coast in 2000 and to measure soil $CO_2$ efflux and environmental factors between March 2011 and February 2012. Soil $CO_2$ efflux was measured with LI-6400 once a month; the soil temperature at 10 cm depth, air temperature, and soil moisture contents were measured in continuum. Soil $CO_2$ efflux showed the maximum value in August 2011 as 417.8 mg $CO_2m^{-2}h^{-1}$ (at burned site) and 1175.1 mg $CO_2m^{-2}h^{-1}$ (at unburned site), while it showed the minimum value as 41.4 mg $CO_2m^{-2}h^{-1}$ (at burned site) in December 2011 and 42.7 mg $CO_2m^{-2}h^{-1}$ (at unburned site) in February 2012. The result showed the high correlation between soil $CO_2$ efflux and the seasonal changes in temperature. More specifically, soil temperature showed higher correlation with soil $CO_2$ efflux in the burned site ($R^2$ = 0.932, P < 0.001) and the unburned site ($R^2$ = 0.942, P < 0.001) than the air temperature in the burned site ($R^2$ = 0.668, P < 0.01) and the unburned site ($R^2$ = 0.729, P < 0.001). $Q_{10}$ values showed higher sensitivity in the unburned site (4.572) than in the burned site (2.408). The total soil $CO_2$ efflux was obtained with the exponential function between soil $CO_2$ efflux and soil temperature during the research period, and it showed 2.5 times higher in the unburned site (35.59 t $CO_2ha^{-2}yr^{-1}$, 1 t = $10^3$ kg) than in the burned site (14.69 t $CO_2ha^{-2}yr^{-1}$).
토양온도는 비점오염과 관련된 수문학적 및 생지화학적 과정에 영향을 주는 중요한 물리적 환경인자 중 하나이다. 이 연구에서는 분포형 유역모델인 CAMEL(Chemicals, Agricultural Management and Erosion Losses)의 겨울철 토양온도 모의성능을 개선하기 위해서 융설과 토양 동결-융해 모델을 개발하였으며, 경기도 여주에 위치한 시험유역의 4개 지점에서 3개월 동안 관측한 토양온도 자료를 사용하여 모델을 보 검정하였다. 모의 결과, 표층 토양온도에 대해서는 모델이 토양온도의 시계열 변화를 비교적 잘 재현하는 반면($R^2$ 0.71~0.95, RMSE $0.89{\sim}1.49^{\circ}C$), 하부토양층 온도에 대해서는 경우에 따라 모델의 예측오차가 다소 크게 나타났는데($R^2$ 0.51~0.97, RMSE $0.51{\sim}5.08^{\circ}C$), 이것은 모델에서 토양 깊이별 토성을 동일한 것으로 가정한 것이 주요 원인인 것으로 판단된다. 한편, 개발된 모델은 융설에 의한 단열효과와 토양 동결-융해 과정에서 유입 또는 방출되는 잠열흐름의 영향으로 토양온도의 진폭이 감소하는 현상을 잘 모의하고 있다. 비록 모델 구조의 한계와 자료의 부족으로 토양온도에 대한 다소의 예측오차가 발생하였지만, 개발된 토양온도 모델은 시험유역의 토지이용 및 지형에 따른 토양온도와 적설상당수량의 시공간적 분포를 합리적으로 잘 모의하는 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.