• Title/Summary/Keyword: Soil Spring

Search Result 660, Processing Time 0.023 seconds

Optimal Levels of Additional N Fertigation for Greenhouse Watermelon Based on Cropping Pattern and Growth Stage

  • Sung, Jwakyung;Jung, Kangho;Yun, Hejin;Cho, Minji;Lim, Jungeun;Lee, Yejin;Lee, Seulbi;Lee, Deogbae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.699-704
    • /
    • 2016
  • An estimation of optimal requirement of additional N by cropping pattern and growth stage is very important for greenhouse watermelon. The objectives of this study were to estimate an amount of optimal additional N based on growth, N uptake and yield of watermelon. In order to achieve these goals, we performed the study at farmer's greenhouse with a fertigation system and watermelon was cultivated three times (spring, summer and autumn) in 2015. The levels of additional N were set up with x0.5, x0.75, x1.0 and x1.5 of the $NO_3$-N-based soil-testing N supply for watermelon cultivation. The trends of growth and N uptake of watermelon markedly differed from cropping pattern; spring (sigmoid), summer and autumn (linear). The yield of watermelon was the highest at summer season and followed by autumn and spring. Also, the x1.5N showed a significantly higher yield compared to other N treatments. On the basis of growth, N uptake and yield of watermelon, we estimated an optimal level of additional N by cropping pattern and growth stage as follows; 1) spring (transplanting ~ 6 WAT : 6 ~ 14 WAT : 14 ~ harvest = 5 : 90 : 5%), summer (transplanting ~ 4 WAT : 4 ~ 8 WAT : 8 ~ harvest = 25 : 50 : 25%) and autumn (transplanting ~ 4 WAT : 4 ~ harvesting : 50 : 50%). In conclusion, nutrient management, especially N, based on cropping pattern and growth stage was effective for favorable growth and yield of watermelon.

Buckling analysis of piles in weak single-layered soil with consideration of geometric nonlinearities

  • Emina Hajdo;Emina Hadzalic;Adnan Ibrahimbegovic
    • Coupled systems mechanics
    • /
    • v.13 no.3
    • /
    • pp.187-200
    • /
    • 2024
  • This paper presents a numerical model for buckling analysis of slender piles, such as micropiles. The model incorporates geometric nonlinearities to provide enhanced accuracy and a more comprehensive representation of pile buckling behavior. Specifically, the pile is represented using geometrically nonlinear beams with the von Karman deformation measure. The lateral support provided by the surrounding soil is modeled using the spring approach, with the spring stiffness determined according to the undrained shear strength of the soil. The numerical model is tested across a wide range of pile slenderness ratios and undrained shear strengths of the surrounding soil. The numerical results are validated against analytical solutions. Furthermore, the influence of various pile bottom end boundary conditions on the critical buckling force is investigated. The implications of the obtained results are thoroughly discussed.

Comparative Study on Soil-Structure Interaction Models for Modal Characteristics of Wind Turbine Structure (풍력 구조물의 진동 특성 분석을 위한 지반-구조물 상호작용 모델의 비교 연구)

  • Kim, Jeongsoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.4
    • /
    • pp.245-253
    • /
    • 2020
  • In this study, natural frequencies are compared using several pile-soil interaction (PSI) models to evaluate the effects of each model on resonance safety checks for a monopile type of wind turbine structure. Base spring, distributed spring, and three-dimensional brick-shell models represented the PSIs in the finite element model. To analyze the effects of the PSI models on a natural frequency, after a stiffness matrix calculation and Winkler-based beam model for base spring and distributed spring models were presented, respectively; natural frequencies from these models were investigated for monopiles with different geometries and soil properties. These results were compared with those from the brick-shell model. The results show that differences in the first natural frequency of the monopiles from each model are small when the small diameter of monopile penetrates hard soil and rock, while the distributed spring model can over-estimate the natural frequency for large monopiles installed in weak soil. Thus, an appropriate PSI model for natural frequency analyses should be adopted by considering soil conditions and structure scale.

Investigation of soil factors on physiological disorder of vegetable crops in vinyl house II. lettuce, spring onion and red pepper (시설원예 작물의 생리장해유발 토양요인 규명 2. 고추 상치, 쪽파)

  • Choi, Byung-Ju;Lee, Chong-Ho;Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.2
    • /
    • pp.152-157
    • /
    • 1991
  • Growth status, plant nutrition and soil chemical properties were investigated for lettuce, spring onion and red pepper grown under vinyl house near Yesan. Low Ca and Mg with high K in soil resulted in Ca deficiency with slight Mg insufficiency in Korean lettuce. In this soil pH was low and EC was extremely low. Spring onion(Allium wakegi) can not emerge or showed poor growth(50%) due to high EC(above 0.5m mho/cm) and low pH (below 6.2). Red pepper plant showed wilt disease probably due to low soil pH.

  • PDF

Seasonal Variation of Carbon Dioxide Flux between Soil Surface Layer and Atmosphere in Unvegetated Tidal Flat : Beolgyo Tidal Flat (비식생 갯벌 표층과 대기의 이산화탄소 플럭스 계절 변동 분석: 벌교 갯벌)

  • Kyeong-deok Park;Dong-hwan Kang;Yoon Hwan So;Won Gi Jo;Byung-Woo Kim
    • Journal of Environmental Science International
    • /
    • v.32 no.4
    • /
    • pp.267-276
    • /
    • 2023
  • In this study, we analyzed seasonal variations in carbon dioxide fluxes, concentrations, and soil temperatures over three years in unvegetated tidal flats in the Beolgyo area. We also investigated the correlations between carbon dioxide fluxes and influencing factors. The average carbon dioxide flux was positive in summer and autumn but negative in winter and spring. A positive correlation was observed between carbon dioxide flux and soil temperature in spring whereas a negative correlation was noted in summer. In summer and autumn, as the soil temperature increased, the carbon dioxide flux decreased. In contrast, in spring and winter, as the soil temperature decreased, the carbon dioxide flux increased. Overall, this study reveals the significant influence of soil temperatures on carbon dioxide fluxes between the surface layer of the tidal flat and atmosphere.

A two-dimensional hyperbolic spring model for mat foundation in clays subjected to vertical load

  • Der-Wen Chang;Tzu-Min Chou;Shih-Hao Cheng;Louis Ge
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.527-538
    • /
    • 2024
  • This study proposes a two-dimensional hyperbolic soil spring model for mat foundations in clays subjected to vertically uniform loads to simplify the complexity of three-dimensional finite element analysis on mat foundations. The solutions from three-dimensional finite element analysis were examined to determine the hyperbolic model parameters of the soil springs underneath the slab. Utilizing these model parameters, normalized functions across the middle section of the mat were obtained. The solutions from the proposed model, along with the approximate finite difference analysis of the mat in clays under vertical load, were found to be consistent with those from the three-dimensional finite element analysis. The authors conclude that the proposed method can serve as an alternative for the preliminary design of mat foundations.

Study on the Natural Frequency of Wind Turbine Tower Based on Soil Pile interaction to Evaluate Resonant Avoidance Frequency (지반조건 상호작용을 고려한 풍력발전타워의 공진회피 진동수 산정을 위한 고유진동수 해석 연구)

  • Kim, Pyoung-Hwa;Kang, Sung-Yong;Lee, Yun-Woo;Kang, Young-jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.734-742
    • /
    • 2016
  • Global warming and the depletion of fossil fuels have been caused by decades of reckless development. Wind energy is one form of renewable energy and is considered a future energy source. The wind tower is designed with a fundamental frequency in the soft-stiff design between the 1P and 3P range to avoid resonance. Usually, to perform natural frequency analysis of a wind tower, the boundary condition is set to the Fixed-End, and soil-pile interaction is not considered. In this study, consideration of the effect of soil-pile interaction on the wind tower was included and the difference in the natural frequency was studied. The fixed boundary condition was not affected by the soil condition and depth of the pile and the coupled spring boundary condition was unaffected by the depth of pile but affected by the depth of the pile, and the Winkler spring boundary condition is affected by both the soil condition and the depth of the pile. Therefore, the coupled spring boundary condition should be used in shallow depth soil conditions because the soil condition does not take the shallow depth soil into consideration.

Seasonal Changed of Microbial Population in the Field Soil (계절에 따른 토양중 미생물의 밀도 변화)

  • Park, Dong-Jin;Lee, Sang-Hwa;Kim, Chang-Jin
    • Korean Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.144-148
    • /
    • 1998
  • Soil microorganisms including bacteria, fungi, and actinomycetes were seasonally isolated at depths (0.5~2, $10{\pm}1$, $50{\pm}1cm$) of field. The frequency of microbial isolates was employed for the determination of microbial population (CFU/g dry soil) and distribution ratio (%) in soil. Both bacteria (24-fold) and actinomycetes (7-fold) exhibited the biggest change at the depth of $50{\pm}1cm$, whereas fungi showed the maximum (13-fold) at $10{\pm}1cm$. On the whole, the bacterial population was high in spring soil, fungi in winter, and actinomycetes in autumn. Soil microorganisms also exhibited the seasonal variation on their distribution ratio (%). The maximum distribution ratio (85.7%) of bacteria was observed at the depth of $50{\pm}1cm$ in spring, whereas bacteria showed the minimum (35.2%) at the depth of $10{\pm}1cm$ in spring. The maximum distribution ratio (23.0%) of fungi was found at the depth of $50{\pm}1cm$ in spring, whereas its minimum (0.5%) at the depth of $10{\pm}1cm$ in spring. Actinomycetes exhibited the maximum distribution ratio (45.2%) at the depth of $10{\pm}1cm$ in spring, whereas its minimum (12.2%) was showed at the depth of $50{\pm}1cm$ in spring.

  • PDF

3D analytical method for mat foundations considering coupled soil springs

  • Lee, Jaehwan;Jeong, Sangseom;Lee, Joon Kyu
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.845-857
    • /
    • 2015
  • The 3D numerical analysis is carried out to investigate the settlement behavior of flexible mat foundations subjected to vertical loads. Special attention is given to the improved analytical method (YS-MAT) that reflects the mat flexibility and soil spring coupling effect. The soil model captures the stiffness of the soil springs as well as the shear interaction between the soil springs. The proposed method has been validated by comparing the results with other numerical approaches and field measurements on mat foundation. Through comparative studies, the proposed analytical method was in relatively good agreement with them and capable of predicting the behavior of the mat foundations.

Variations of Soil Temperatures in Winter and Spring at a High Elevation Area (Boulder, Colorado)

  • Lee, Jin-Yong;Lim, Hyoun Soo;Yoon, Ho Il;Kim, Poongsung
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.5
    • /
    • pp.16-25
    • /
    • 2015
  • The City of Boulder is located at an average elevation of 1,655 m (5,430 feet), the foothills of the Rocky Mountains in Colorado. Its daily air temperature is much varying and snow is very frequent and heavy even in spring. This paper examines characteristics of shallow (surface and depth = 10 cm) soil temperatures measured from January to May 2015 in the high elevation city Boulder, Colorado. The surface soil temperature quickly responded to the air temperature with the strongest periodicity of 1 day while the subsurface soil temperatures showed a less correlation and delayed response with that. The short-time Fourier of the soil temperatures uncovered their very low frequencies characteristics in heavy snow days while it revealed high frequencies of their variations in warm spring season. The daily minimum air temperature exhibited high cross-correlations with the soil temperatures without lags unlike the maximum air temperature, which is derived from its higher and longer auto-correlation and stronger spectrums of low frequencies than the maximum air temperature. The snow depth showed an inverse relationship with the soil temperature variations due to snow's low thermal conductivity and high albedo. Multiple regression for the soil temperatures using the air temperature and snow depth presented its predicting possibility of them even though the multiple r2 of the regression is not that much satisfactory (r2 = 0.35-0.64).