• Title/Summary/Keyword: Soil Sensing

Search Result 423, Processing Time 0.036 seconds

OPTICAL PROPERTIES OF ASIAN DUST AEROSOL DERIVED FROM SEAWIFS AND LIDAR OBSERVATIONS: A CASE STUDY OF DUST OVER CLOUDS

  • Fukushima, H.;Kobayashi, H.;Murayama, T.;Ohta, S.;Uno, I.
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.367-372
    • /
    • 2002
  • Asian dust aerosol layer of 4-6 km altitude accompanied by low clouds was observed by LIDAR and sky-radiometer in Tokyo urban area on April 10, 2001. To synthesize the top of atmosphere (TOA) reflectance, radiative transfer simulation conducted assuming aerosol/cloud vertical structure and aerosol size distribution that were modeled after the ground observations. The refractive index of Asian dust is derived from a laboratory measurement of sampled Chinese soil particles. The synthesized TOA reflectance is compared to the SeaWiFS-derived one sampled at the low cloud pixels whose airmass is the same as the one passed at the observation site. While the two TOA reflectances compare generally well with few percent difference in reflectance, possible sources of the discrepancy are discussed.

  • PDF

Multi-temporal image derived Ratio Vegetation Index and NDVI in a landslide prone region

  • Paramarthalingam, Rajakumar;Shanmugam, Sanjeevi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.257-259
    • /
    • 2003
  • Landuse maps are prepared from satellite imagery and field observations were conducted at various locations in the study area. Compared to the field data and NDVI and RVI thematic maps, NDVI is better than RVI, because it compensates for changing illumination conditions, surface slope, aspect and other factors. Clouds, water and snow have negative values for RVI and NDVI. Rock and bare soils have similar reflectance in both NIR and visible band, so RVI and NDVI are near zero. In forest areas with good vegetation cover, NDVI is high and landslide occurrence is less. But if annual and biennial vegetations are present and if cultivation practices are changed frequently, NDVI is medium and landslide occurrence is moderate. In areas where deforestation and settlement is in progress, NDVI is less and landslide occurrence is more. The NDVI FCC thematic map may be used as an important layer in GIS application for landslide studies. Analyzing other layers such as slope, rainfall, soil, geology, drainage, lineament, etc with NDVI FCC layer will give a better idea about the identity of landslide prone areas.

  • PDF

Landslide Susceptibility Analysis and its Verification using Likelihood Ratio, Logistic Regression and Artificial Neural Network Methods: Case study of Yongin, Korea

  • Lee, S.;Ryu, J. H.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.132-134
    • /
    • 2003
  • The likelihood ratio, logistic regression and artificial neural networks methods are applied and verified for analysis of landslide susceptibility in Yongin, Korea using GIS. From a spatial database containing such data as landslide location, topography, soil, forest, geology and land use, the 14 landsliderelated factors were calculated or extracted. Using these factors, landslide susceptibility indexes were calculated by likelihood ratio, logistic regression and artificial neural network methods. Before the calculation, the study area was divided into two sides (west and east) of equal area, for verification of the methods. Thus, the west side was used to assess the landslide susceptibility, and the east side was used to verify the derived susceptibility. The results of the landslide susceptibility analysis were verified using success and prediction rates. The v erification results showed satisfactory agreement between the susceptibility map and the exis ting data on landslide locations.

  • PDF

Evaluation of waste disposal site using the DRASTIC system in Southern Korea

  • Lee, S.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.126-128
    • /
    • 2003
  • As a systematic approach to waste disposal site screening for groundwater pollution protection, the DRASTIC system developed by the US Environmental Protection Agency (USEPA) was introduced at Younggwang County in Korea. Hydrogeologic spatial databases for the system include info rmation on depth to water, net recharge, aquifer media, soil media, topographic slope, hydraulic conductivity and lineament. Using the databases, the DRASTIC system and a GIS, the regional groundwater pollution vulnerability of the study area was assessed. The fracture density extracted from lineament maps was added to the DRASTIC system to take into account the preferential migration of contaminants through fractures. From the results of the study, a degree of groundwater pollution vulnerability through the study area was easily interpreted, and waste disposal sites could be screened for groundwater protection.

  • PDF

The extraction method for the best vegetation distribution zone using satellite images in urban area

  • Jo, Myung-Hee;Kim, Sung-Jae;Lee, Kwang-Jae
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.908-910
    • /
    • 2003
  • In this paper the extraction method for the best suitable green vegetation area in urban area, Daegu, Korea, was developed using satellite images (1994, 1999, Landsat TM). For this, the GIS overlay analysis of GVI (Green Vegetation Index), SBI (Soil Brightness index), NWI (None-Such wetness Index) was performed to estimate the best suitable green vegetation area. Also, the statistical documents, algorithm and Tasseled-Cap index were used to recognize the change of land cover such as cultivation area, urban area, and damaged area. Through the result of this study, it is possible to monitor the large sized reclamation of land by drainage or damaged area by forest fires. Moreover, information with the change of green vegetation and the status of cultivation by GVI, but also moisture content by percentage by NWI and surface class by SBI can be obtained.

  • PDF

Independent Component Analysis of Mixels in Agricultural Land Using An Airborne Hyperspectral Sensor Image

  • Kosaka, Naoko;Shimozato, Masao;Uto, Kuniaki;Kosugi, Yukio
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.334-336
    • /
    • 2003
  • Satellite and airborne hyperspectral sensor images are suitable for investigating the vegetation state in agricultural land. However, image data obtained by an optical sensor inevitably includes mixels caused by high altitude observation. Therefore, mixel analysis method, which estimates both the pure spectra and the coverage of endmembers simultaneously, is required in order to distinguish the qualitative spectral changes due to the chlorophyll quantity or crop variety, from the quantitative coverage change. In this paper, we apply our agricultural independent component analysis (ICA) model to an airborne hyperspectral sensor image, which includes noise and fluctuation of coverage, and estimate pure spectra and the mixture ratio of crop and soil in agricultural land simultaneously.

  • PDF

Calculation of Soil Moisture and Evapotranspiration of KLDAS applying Ground-Observed Meteorological Data (지상관측 기상자료를 적용한 KLDAS(Korea Land Data Assimilation System)의 토양수분·증발산량 산출)

  • Park, Gwangha;Kye, Changwoo;Lee, Kyungtae;Yu, Wansik;Hwang, Eui-ho;Kang, Dohyuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1611-1623
    • /
    • 2021
  • Thisstudy demonstratessoil moisture and evapotranspiration performance using Korea Land Data Assimilation System (KLDAS) under Korea Land Information System (KLIS). Spin-up was repeated 8 times in 2018. In addition, low-resolution and high-resolution meteorological data were generated using meteorological data observed by Korea Meteorological Administration (KMA), Rural Development Administration (RDA), Korea Rural Community Corporation (KRC), Korea Hydro & Nuclear Power Co.,Ltd. (KHNP), Korea Water Resources Corporation (K-water), and Ministry of Environment (ME), and applied to KLDAS. And, to confirm the degree of accuracy improvement of Korea Low spatial resolution (hereafter, K-Low; 0.125°) and Korea High spatial resolution (hereafter, K-High; 0.01°), soil moisture and evapotranspiration to which Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) and ASOS-Spatial (ASOS-S) used in the previous study were applied were evaluated together. As a result, optimization of the initial boundary condition requires 2 time (58 point), 3 time (6 point), and 6 time (3 point) spin-up for soil moisture. In the case of evapotranspiration, 1 time (58 point) and 2 time (58 point) spin-ups are required. In the case of soil moisture to which MERRA-2, ASOS-S, K-Low, and K-High were applied, the mean of R2 were 0.615, 0.601, 0.594, and 0.664, respectively, and in the case of evapotranspiration, the mean of R2 were 0.531, 0.495, 0.656, and 0.677, respectively, indicating the accuracy of K-High was rated as the highest. The accuracy of KLDAS can be improved by securing a large number of ground observation data through the results of this study and generating high-resolution grid-type meteorological data. However, if the meteorological condition at each point is not sufficiently taken into account when converting the point data into a grid, the accuracy is rather lowered. For a further study, it is expected that higher quality data can be produced by generating and applying grid-type meteorological data using the parameter setting of IDW or other interpolation techniques.

Estimation of Soybean Growth Using Polarimetric Discrimination Ratio by Radar Scatterometer (레이더 산란계 편파 차이율을 이용한 콩 생육 추정)

  • Kim, Yi-Hyun;Hong, Suk-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.878-886
    • /
    • 2011
  • The soybean is one of the oldest cultivated crops in the world. Microwave remote sensing is an important tool because it can penetrate into cloud independent of weather and it can acquire day or night time data. Especially a ground-based polarimetric scatterometer has advantages of monitoring crop conditions continuously with full polarization and different frequencies. In this study, soybean growth parameters and soil moisture were estimated using polarimetric discrimination ratio (PDR) by radar scatterometer. A ground-based polarimetric scatterometer operating at multiple frequencies was used to continuously monitor the soybean growth condition and soil moisture change. It was set up to obtain data automatically every 10 minutes. The temporal trend of the PDR for all bands agreed with the soybean growth data such as fresh weight, Leaf Area Index, Vegetation Water Content, plant height; i.e., increased until about DOY 271 and decreased afterward. Soil moisture lowly related with PDR in all bands during whole growth stage. In contrast, PDR is relative correlated with soil moisture during below LAI 2. We also analyzed the relationship between the PDR of each band and growth data. It was found that L-band PDR is the most correlated with fresh weight (r=0.96), LAI (r=0.91), vegetation water content (r=0.94) and soil moisture (r=0.86). In addition, the relationship between C-, X-band PDR and growth data were moderately correlated ($r{\geq}0.83$) with the exception of the soil moisture. Based on the analysis of the relation between the PDR at L, C, X-band and soybean growth parameters, we predicted the growth parameters and soil moisture using L-band PDR. Overall good agreement has been observed between retrieved growth data and observed growth data. Results from this study show that PDR appear effective to estimate soybean growth parameters and soil moisture.

Estimation for N Fertilizer Application Rate and Rice (Oriza sativa L.) Biomass by Ground-based Remote Sensors (지상원격탐사 센서를 활용한 벼의 질소시비수준 및 생체량 추정)

  • Shim, Jae-Sig;Lee, Joeng-Hwan;Shin, Su-Jung;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.749-759
    • /
    • 2012
  • A field experiment was conducted to selection of ground-based remote sensor and reflectance indices to estimate rice production, estimation of suitable season for ground-based remote sensor and N top dressing fertilizer application rate in 2010. Fertilizer application was determined by "Fertilizer management standard for crops" (National Academy of Agricultural Science, 2006). Four levels of N-fertilizer were applied as 0%, 70%, 100% and 130% by base N-fertilizer application and were fertilized as 70% of basal dressing and 30% as top dressing. Rice (Oryza sativa L.) of Chucheong and Joonam (Korean cultivar) were planted on May 22, 2010 in sandy loam soil and harvested on October 6, 2010. Reflectance indices were measured 7 times from July 5 to August 23 by Crop circle-amber and red version and GreenSeeker-green and red version. Remote sensing angle from the sensor head to the canopy of rice was adjusted to $45^{\circ}$, $70^{\circ}$ and $90^{\circ}$ degree because of difference in the density of plant and the sensing angle. The reflectance indices obtained ground-based remote sensor were correlated with the biomass of rice at the early growth stage and at the harvest with $70^{\circ}$ and $90^{\circ}$ degree of sensor angle. The reflectance indices at the 52th Day After Transplanting (DAT) and the 59th DAT, critical season, were positively correlated with dry weight and nitrogen uptake. Specially NDVI at the 59th was significantly correlated with the mentioned parameters. Based on the result of this study, rNDVI by GreenSeeker on $70^{\circ}$ degree of angle at the 59th DAT in Chucheong and rNDVI by Crop Circle on $70^{\circ}$ degree of angle and gNDVI by GreenSeeker on $70^{\circ}$ degree of angle at the 59th DAT in Joonam can be useful for estimation of dry weight and nitrogen uptake. Moreover, sufficiency index estimated by reflectance index at the 59th DAT can be useful for the estimation of N-fertilizer level application and can be used as a model for N-top dressing fertilizer management.

Biomass Estimation of Gwangneung Catchment Area with Landsat ETM+ Image

  • Chun, Jung Hwa;Lim, Jong-Hwan;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.5
    • /
    • pp.591-601
    • /
    • 2007
  • Spatial information on forest biomass is an important factor to evaluate the capability of forest as a carbon sequestrator and is a core independent variable required to drive models which describe ecological processes such as carbon budget, hydrological budget, and energy flow. The objective of this study is to understand the relationship between satellite image and field data, and to quantitatively estimate and map the spatial distribution of forest biomass. Landsat Enhanced Thematic Mapper (ETM+) derived vegetation indices and field survey data were applied to estimate the biomass distribution of mountainous forest located in Gwangneung Experimental Forest (230 ha). Field survey data collected from the ground plots were used as the dependent variable, forest biomass, while satellite image reflectance data (Band 1~5 and Band 7), Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), and RVI (Ratio Vegetation Index) were used as the independent variables. The mean and total biomass of Gwangneung catchment area were estimated to be about 229.5 ton/ha and $52.8{\times}10^3$ tons respectively. Regression analysis revealed significant relationships between the measured biomass and Landsat derived variables in both of deciduous forest ($R^2=0.76$, P < 0.05) and coniferous forest ($R^2=0.75$, P < 0.05). However, there still exist many uncertainties in the estimation of forest ecosystem parameters based on vegetation remote sensing. Developing remote sensing techniques with adequate filed survey data over a long period are expected to increase the estimation accuracy of spatial information of the forest ecosystem.