• 제목/요약/키워드: Soil Sensing

검색결과 427건 처리시간 0.027초

실시간 토양 유기물 센서와 DGPS를 이용한 질소 시비량 지도 작성 시스템 개발 (Development of Electronic Mapping System for N-fertilizer Dosage Using Real-time Soil Organic Matter Sensor)

  • 조성인;최상현;김유용
    • Journal of Biosystems Engineering
    • /
    • 제27권3호
    • /
    • pp.259-266
    • /
    • 2002
  • It is crucial to know spatial soil variability for precision farming. However, it is time-consuming, and difficult to measure spatial soil properties. Therefore, there are needs fur sensing technology to estimate spatial soil variability, and for electronic mapping technology to store, manipulate and process the sampled data. This research was conducted to develop a real-time soil organic matter sensor and an electronic mapping system. A soil organic matter sensor was developed with a spectrophotometer in the 900∼1,700 nm range. It was designed in a penetrator type to measure reflectance of soil at 15cm depth. The signal was calibrated with organic matter content (OMC) of the soil which was sampled in the field. The OMC was measured by the Walkeley-Black method. The soil OMCs were ranged from 0.07 to 7.96%. Statistical partial least square and principle component regression analyses were used as calibration methods. Coefficient of determination, standard error prediction and bias were 0.85 0.72 and -0.13, respectively. The electronic mapping system was consisted of the soil OMC sensor, a DGPS, a database and a makeshift vehicle. An algorithm was developed to acquire data on sampling position and its OMC and to store the data in the database. Fifty samples in fields were taken to make an N-fertilizer dosage map. Mean absolute error of these data was 0.59. The Kring method was used to interpolate data between sampling nodes. The interpolated data was used to make a soil OMC map. Also an N-fertilizer dosage map was drawn using the soil OMC map. The N-fertilizer dosage was determined by the fertilizing equation recommended by National Institute of Agricultural Science and Technology in Korea. Use of the N-fertilizer dosage map would increase precision fertilization up to 91% compared with conventional fertilization. Therefore, the developed electronic mapping system was feasible to not only precision determination of N-fertilizer dosage, but also reduction of environmental pollution.

광반사를 이용한 한국 논 토양 특성센서를 위한 샘플링과 캘리브레이션 요구조건 (Sampling and Calibration Requirements for Optical Reflectance Soil Property Sensors for Korean Paddy Soils)

  • 이규승;이동훈;정인규;정선옥
    • Journal of Biosystems Engineering
    • /
    • 제33권4호
    • /
    • pp.260-268
    • /
    • 2008
  • Optical diffuse reflectance sensing has potential for rapid and reliable on-site estimation of soil properties. For good results, proper calibration to measured soil properties is required. One issue is whether it is necessary to develop calibrations using samples from the specific area or areas (e.g., field, soil series) in which the sensor will be applied, or whether a general "factory" calibration is sufficient. A further question is if specific calibration is required, how many sample points are needed. In this study, these issues were addressed using data from 42 paddy fields representing 14 distinct soil series accounting for 74% of the total Korean paddy field area. Partial least squares (PLS) regression was used to develop calibrations between soil properties and reflectance spectra. Model evaluation was based on coefficient of determination ($R^2$) root mean square error of prediction (RMSEP), and RPD, the ratio of standard deviation to RMSEP. When sample data from a soil series were included in the calibration stage (full information calibration), RPD values of prediction models were increased by 0.03 to 3.32, compared with results from calibration models not including data from the test soil series (calibration without site-specific information). Higher $R^2$ values were also obtained in most cases. Including some samples from the test soil series (hybrid calibration) generally increased RPD rapidly up to a certain number of sample points. A large portion of the potential improvement could be obtained by adding about 8 to 22 points, depending on the soil properties to be estimated, where the numbers were 10 to 18 for pH, 18-22 for EC, and 8 to 22 for total C. These results provide guidance on sampling and calibration requirements for NIR soil property estimation.

태풍 루사에 의한 토양 침식량 산정을 위한 GIS와 범용토양손실공식(USLE) 연계 (Integration of GIS with USLE in Assessment of Soil Erosion due to Typoon Rusa)

  • 함창학;김병식
    • 대한공간정보학회지
    • /
    • 제15권3호
    • /
    • pp.77-85
    • /
    • 2007
  • 토양침식의 산정은 많은 비용과 시간을 요구한다. 한 지역에서 토양침식을 예측하기 위한 많은 모형들이 있지만, 범용토양손실공식(USLE, Universal Soil Loss Equation)이 연 토양 침식량 산정을 위한 경험식으로 가장 널리 사용되고 있다. 토양침식은 강우강도, 토양의 종류, 토지 피복과 토지이용, 사면경사와 경사길이, 그리고 토양보전을 위한 시설의 영향을 받는다. 이러한 모든 변수들은 공간적으로 분포되어 있기 때문에 지형정보시스템(GIS)이 토양침식 영향평가에 널리 적용될 수 있다. 본 연구에서는 IHP 대표 유역인 보청천 유역을 대상으로 지형정보시스템(GIS)과 범용토양손실 공식을 연계하여 태풍 루사의 강우에 의한 유역에서의 토양 침식량을 산정하였다.

  • PDF

Automatic 3D soil model generation for southern part of the European side of Istanbul based on GIS database

  • Sisman, Rafet;Sahin, Abdurrahman;Hori, Muneo
    • Geomechanics and Engineering
    • /
    • 제13권6호
    • /
    • pp.893-906
    • /
    • 2017
  • Automatic large scale soil model generation is very critical stage for earthquake hazard simulation of urban areas. Manual model development may cause some data losses and may not be effective when there are too many data from different soil observations in a wide area. Geographic information systems (GIS) for storing and analyzing spatial data help scientists to generate better models automatically. Although the original soil observations were limited to soil profile data, the recent developments in mapping technology, interpolation methods, and remote sensing have provided advanced soil model developments. Together with advanced computational technology, it is possible to handle much larger volumes of data. The scientists may solve difficult problems of describing the spatial variation of soil. In this study, an algorithm is proposed for automatic three dimensional soil and velocity model development of southern part of the European side of Istanbul next to Sea of Marmara based on GIS data. In the proposed algorithm, firstly bedrock surface is generated from integration of geological and geophysical measurements. Then, layer surface contacts are integrated with data gathered in vertical borings, and interpolations are interpreted on sections between the borings automatically. Three dimensional underground geology model is prepared using boring data, geologic cross sections and formation base contours drawn in the light of these data. During the preparation of the model, classification studies are made based on formation models. Then, 3D velocity models are developed by using geophysical measurements such as refraction-microtremor, array microtremor and PS logging. The soil and velocity models are integrated and final soil model is obtained. All stages of this algorithm are carried out automatically in the selected urban area. The system directly reads the GIS soil data in the selected part of urban area and 3D soil model is automatically developed for large scale earthquake hazard simulation studies.

Using SG Arrays for Hydrology in Comparison with GRACE Satellite Data, with Extension to Seismic and Volcanic Hazards

  • Crossley David;Hinderer Jacques
    • 대한원격탐사학회지
    • /
    • 제21권1호
    • /
    • pp.31-49
    • /
    • 2005
  • We first review some history of the Global Geodynamics Project (GGP), particularly in the progress of ground-satellite gravity comparisons. The GGP Satellite Project has involved the measurement of ground-based superconducting gravimeters (SGs) in Europe for several years and we make quantitative comparisons with the latest satellite GRACE data and hydrological models. The primary goal is to recover information about seasonal hydrology cycles, and we find a good correlation at the microgal level between the data and modeling. One interesting feature of the data is low soil moisture resulting from the European heat wave in 2003. An issue with the ground-based stations is the possibility of mass variations in the soil above a station, and particularly for underground stations these have to be modeled precisely. Based on this work with a regional array, we estimate the effectiveness of future SG arrays to measure co-seismic deformation and silent-slip events. Finally we consider gravity surveys in volcanic areas, and predict the accuracy in modeling subsurface density variations over time periods from months to years.

Analysis of Land Use Change Impact on Storm Runoff in Anseongcheon Watershed

  • Park, Geun-Ae;Jung, In-Kyun;Lee, Mi-Seon;Shin, Hyung-Jin;Park, Jong-Yoon;Kim, Seong-Joon
    • 대한원격탐사학회지
    • /
    • 제24권1호
    • /
    • pp.35-43
    • /
    • 2008
  • The purpose of this study is to evaluate the hydrological impact due to temporal land cover change by gradual urbanization of upstream watershed of Pyeongtaek gauging station of Anseong-cheon. WMS HEC-1 was adopted, and OEM with 200 m resolution and hydrologic soil group from 1:50,000 scale soil map were prepared. Land covers of 1986, 1990, 1994 and 1999 Landsat TM images were classified by maximum likelihood method. The watershed showed a trend that forest & paddy areas decreased and urban/residential area gradually increased during the four selected years. The model was calibrated at 2 locations (Pyeonglaek and Gongdo) by comparing observed with simulated discharge results for 5 summer storm events from 1998 to 2001. The watershed average CN values varied from 61.7 to 62.3 for the 4 selected years. To identify the impact of streamflow by temporal area change of a target land use, a simple evaluation method that the CN values of areas except the target land use are unified as one representative CN value was suggested. By applying the method, watershed average CN value was affected in the order of paddy, forest and urban/residential, respectively.

트랙터 부착형 자동 토양경도 측정 시스템 개발 (Development of an Automatic Soil Hardness Measuring System Mountable on Agricultural Tractors)

  • 이현동;김기대;김찬수;김성환
    • Journal of Biosystems Engineering
    • /
    • 제27권6호
    • /
    • pp.537-546
    • /
    • 2002
  • In this study an automatic soil hardness measuring system mountable on agricultural tractors was developed to improve the accuracy of manual soil hardness testers by a constant penetrating rate, right direction of the cone-penetrometer and the isolation of vibration from the operator. This was necessary to supply similar experimental condition for performance test of new model and comparative experiment. The results of the study are summaried as follows; 1. The system consisted of a sensing part of soil hardness, a driving part of the measuring system and an attaching part between the tractor and the measuring system. 2. The allowable limit value of the system developed was set to 392N to protect from breaking the serve motor and the coupling used in this system. 3. The driving shaft penetrated into soil by 0.3m to measure soil hardness. The soil hardness was measured at the depth of 0.3m from the soil surface but the penetrating work was stopped and the driving shaft was pulled out to protect the system when the value of the soil hardness was too big on foreign substances like stones or straws. 4. Two values measured by automatic measuring system developed in this research and manual penetrometer were compared by statistics hypothesis testing method. When two people measured the soil hardness at the depth of 0.1 and 0.15m by manual cone penetrometer, there was no relationship between two values by two people but the values at the same depths by automatic measuring system developed showed similarity. The automatic system, therefore, developed in this research was proper for measuring soil hardness.

Forest Canopy Density Estimation Using Airborne Hyperspectral Data

  • Kwon, Tae-Hyub;Lee, Woo-Kyun;Kwak, Doo-Ahn;Park, Tae-Jin;Lee, Jong-Yoel;Hong, Suk-Young;Guishan, Cui;Kim, So-Ra
    • 대한원격탐사학회지
    • /
    • 제28권3호
    • /
    • pp.297-305
    • /
    • 2012
  • This study was performed to estimate forest canopy density (FCD) using airborne hyperspectral data acquired in the Independence Hall of Korea in central Korea. The airborne hyperspectral data were obtained with 36 narrow spectrum ranges of visible (Red, Green, and Blue) and near infrared spectrum (NIR) scope. The FCD mapping model developed by the International Tropical Timber Organization (ITTO) uses vegetation index (VI), bare soil index (BI), shadow index (SI), and temperature index (TI) for estimating FCD. Vegetation density (VD) was calculated through the integration of VI and BI, and scaled shadow index (SSI) was extracted from SI after the detection of black soil by TI. Finally, the FCD was estimated with VD and SSI. For the estimation of FCD in this study, VI and SI were extracted from hyperspectral data. But BI and TI were not available from hyperspectral data. Hyperspectral data makes the numerous combination of each band for calculating VI and SI. Therefore, the principal component analysis (PCA) was performed to find which band combinations are explanatory. This study showed that forest canopy density can be efficiently estimated with the help of airborne hyperspectral data. Our result showed that most forest area had 60 ~ 80% canopy density. On the other hand, there was little area of 10 ~ 20% canopy density forest.

A distributed piezo-polymer scour net for bridge scour hole topography monitoring

  • Loh, Kenneth J.;Tom, Caroline;Benassini, Joseph L.;Bombardelli, Fabian A.
    • Structural Monitoring and Maintenance
    • /
    • 제1권2호
    • /
    • pp.183-195
    • /
    • 2014
  • Scour is one of the leading causes of overwater bridge failures worldwide. While monitoring systems have already been implemented or are still being developed, they suffer from limitations such as high costs, inaccuracies, and low reliability, among others. Also, most sensors only measure scour depth at one location and near the pier. Thus, the objective is to design a simple, low cost, scour hole topography monitoring system that could better characterize the entire depth, shape, and size of bridge scour holes. The design is based on burying a robust, waterproofed, piezoelectric sensor strip in the streambed. When scour erodes sediments to expose the sensor, flowing water excites it to cause the generation of time-varying voltage signals. An algorithm then takes the time-domain data and maps it to the frequency-domain for identifying the sensor's resonant frequency, which is used for calculating the exposed sensor length or scour depth. Here, three different sets of tests were conducted to validate this new technique. First, a single sensor was tested in ambient air, and its exposed length was varied. Upon verifying the sensing concept, a waterproofed prototype was buried in soil and tested in a tank filled with water. Sensor performance was characterized as soil was manually eroded away, which simulated various scour depths. The results confirmed that sensor resonant frequencies decreased with increasing scour depths. Finally, a network of 11 sensors was configured to form a distributed monitoring system in the lab. Their exposed lengths were adjusted to simulate scour hole formation and evolution. Results showed promise that the proposed sensing system could be scaled up and used for bridge scour topography monitoring.

GIS 및 원격탐사를 이용한 2002년 강릉지역 태풍 루사로 인한 산사태 연구(II)-확률기법을 이용한 강릉지역 산사태 취약성도 작성 및 교차 검증 (Study on Landslide using GIS and Remote Sensing at the Kangneung Area(II)-Landslide Susceptibility Mapping and Cross-Validation using the Probability Technique)

  • 이사로;이명진;원중선
    • 자원환경지질
    • /
    • 제37권5호
    • /
    • pp.521-532
    • /
    • 2004
  • 본 연구의 목적은 강릉지역에 대해 산사태 취약성을 GIS와 원격탄사를 이용하여 평가하는 것이다. 이를 위해 산사태 위치는 위성영상 해석 및 현지 조사를 통해 확인되었고, GIS와 원격탐사를 이용하여 지형도, 토양도, 지질도, 선구조도, 토지피복도 등이 수집되고, 처리된 후 공간 데이터베이스로 구축되었다. 확률 기법인 빈도비 모델을 이용하여 산사태와 경사, 경사방향, 곡률, 수계, 지형종류, 토질, 토양모재, 토양배수, 유효토심, 임상종류, 임상경급, 임상영급, 임상밀도, 암상, 토지피복도, 선구조도 등 산사태 발생 요인들과의 관계를 계산하여 빈도비를 구하였다. 그리고 이러한 빈도비를 모두 더하여 산사태 취약성 지수를 계산하였으며, 이러한 취약서 지수를 모두 더하여 취약성도를 작성하였다. 그 결과는 실제 산사태 위치자료를 이용하여 검증 및 교차 검증되었고, 그 검증 결과는 산사태 취약성도와 산사태 위치와 밀접한 관계가 있었다.